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                                                        Hamiltonian Graphs

Possible Topics for Science Fair                                                               

Whenever we think of Science Museums, we usually imagine huge skeletons of dinosaurs, dancing of colourful laser beams, 
holograph paintings, computer animations, photos from space etc., but never take a random walk through prime numbers! We do 
not see too many math displays simply because it is thought of as an ‘abstract’ science of ideas and not as concrete as, say, physics 
or engineering. But the fact is that most of the abstract mathematical concepts do arise from very concrete physical and biological 
situations and hence it is certainly possible to design dynamic and interactive mathematical exhibits. Here, by ‘interactive’ we 
do not necessarily mean just pushing buttons but the ability of the exhibit to take along the mind of the audience to a conceptual 
tour of the area. The point is that even though mathematics is abstract, interest in mathematics can be stimulated by exhibits that 
are beautiful, mind-teasing, or practical or both. The purpose of this section is to offer some examples of famous problems in 
mathematics which are ideal for designing math displays at the high school level.

In this issue, we suggest the problem of Hamiltonian                           cycles. A network of points, or vertices, and lines, or edges, 
is called a graph. In many areas of engineering,                                     telecommunications and computer science, researchers 
often need to know if there is a path that                                                          travels along the edges of a given graph visiting each 
vertex once, and only once,   and                                                                                 returning to the starting vertex. Such a path is 
called an Hamiltonian cycle. To find                                                                           whether such a path exists, or not, for a given 
graph is the celebrated Problem of Hamilton                                                     cycles. This is a hard problem, in a very technical 
sense. However, it is relatively very easy to                                                     create graphs having Hamilton cycles and otherwise. 
See the examples given below where                                                               Hamilton cycles are given by dark edges.

So here is the actual project. Prepare several sets of graphs: some having Hamiltonian cycles (for example, the graph above) and 
others not having such a cycle. Consult the websites given on Page 5,  to find some good non-trivial examples of such graphs. 
Make transparencies of the graphs having Hamiltonian cycles and mark the cycle in colour with bold edges as shown in our 
examples. Ask the audience to find Hamiltonian cycles in the graphs in your poster. Then you can overlay your transparencies to 
reveal the actual Hamiltonian paths. There are examples of almost similar graphs, one having such a cycle and the other none! 
For example, the planar graphs corresponding to all the five Platonic solids are Hamiltonian. Consult the websites for examples of 
either kind and properties which guarantee the existences of such Hamiltonian cycles. Good luck in your project. 

********
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MANITOBA MATH LINKS WEB SITE
   ........www.umanitoba.ca/science/mathematics

(a PDF Version of  Math Links is available on this website)

NEED MORE COPIES?????? 
Feel free to reproduce this newsletter and pass it on.......!

SPEAKERS AVAILABLE

If you are interested in having 
a faculty member come to your 
school and speak to students, please 
contact our Managing Editor at 
kangass@cc.umanitoba.ca or phone 
474-8703.

IMPORTANT DATES TO REMEMBER:

Information Days @ U Of M
  February 17th & 18th 
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A NOTE FROM THE EDITORS:
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Statistics Is For You, For Me, and For Everyone

Smiley Cheng & Brian Macpherson
Statistics Department

Aspirin can reduce risk of heart attack!  There is a 30% chance of rain 
today!  The chance of winning this special fundraising lottery is 1 in 
250!  Carlos Degaldo’s batting average for the 2003 season was .302!  
Khari Jones’ passing percentage for the season is 58%!

Headlines such as those above are ones we frequently see, read, or 
hear in the news media and they are actually examples of what can be 
referred to as “Statistics”!

Statistics are everywhere and are used by almost everybody, every-
day.  Most people however, are not fully aware that when they read or 
hear such items they are consuming statistical information.  More-
over, statistics are widely used and applied in a vast array of disci-
plines such as agriculture, medicine, engineering, business, science, 
social science, humanity science and arts.

Statistics as a discipline is not simply a branch of mathematics, 
although it does make extensive use of mathematical techniques as 
fundamental and important tools.  The two crucial ingredients to en-
able you to learn and study statistics are quite simply - common sense 
and a logical mind!

What do statisticians do?  Consider the following statement made by 
a famous person - Florence Nightingale:

The world is filled with uncertainty.  Yet we are continually faced 
with situations where we have to make decisions without full knowl-
edge of the background or of how our decision may impact our future.  
Of course we act carefully, we try to think logically while determin-
ing our priorities and assessing the risks and rewards of our decision.  
Using the mathematical theory of probability, statisticians/statistical 
scientists have formalized this decision-making process in order to 
understand and improve it.

Decision making in the face of uncertainty involves collecting ap-
propriate information, evaluating it, and drawing conclusions.  The 
information might be a measure of the sweetness of a test group’s 
favorite blend of fruit juice, the reoccurrence rate of breast cancer in 
a group of women under treatment, or the velocity of a burning gas 
eruption on the Sun’s surface.

STATISTICS

The most important science in the whole world; for 
upon it depends the practical application of every 
other science and of every art;

the one science essential to all political and social 
administration, all education, all organization 
based on experience, for it only gives results of our 
experience.

Florence Nightingale
Statistician

Statisticians frequently provide crucial guidance to researchers in 
refining their research objectives, in determining what information 
should be collected, in assessing the appropriateness of the data gath-
ered, and in measuring the reliability of predictions made from the col-
lected information.  They provide assistance in the search for clues to 
the solution of a scientific mystery, and very often keep investigators 
from being misled by false impressions.  Statisticians are now viewed 
as being necessary and crucial partners in research projects in virtually 
all fields of study.

Statistical methods are usually developed in a particular context, but 
then find use in a range of endeavors.  For example, experimental 
techniques that help farmers choose appropriate varieties of wheat, 
also assist manufacturers in improving their products, and are a key 
part of the testing of therapeutic drugs before they are approved for 
the general public.  Similarly, methods used to study radio waves from 
distant galaxies, also help to analyze hormone levels in the blood, fluc-
tuations in financial markets and concentrations of atmospheric pol-
lutants.  In each of these cases, statistical principles designed to solve 
one problem have proven to be helpful in solving other problems in 
very different disciplines.  This diversity of application is an exciting 
aspect of the field, and is one reason for the continuing strong demand 
for well-trained statisticians.

Let us quote from an article “Looking for work?  Try a career in NBA” 
from “The Saskatoon Star Phoenix” of March 18, 1999.

The article describes some findings that were published in a book 
Jobs Rated Almanac by Les Krantz (St. Martin’s Griffin, 330 pages).  
Krantz used statistics from the Department of Labor, the U.S. cen-
sus and telephone surveys to rank 250 jobs according to criteria of 
income, stress, physical demands, potential growth, job security and 
work environment.  The study found that “...nine of the top 10 jobs 
were in computer or math-related fields, with Web site managers at the 
top of the heap.  The worst were manual labour jobs in traditionally 
troubled fields, such as fishermen (No.248), lumberjacks (No. 249) 
and oil field roustabouts (No. 250).”  According to the criterion of 
“Best Working Environment” the study showed the ranking of the five 
best careers to be:

No. 1 - Statistician
No. 2 - Mathematician
No. 3 - Computer systems analyst
No. 4 - Hospital Administrator
No. 5 - Historian

Statisticians are continually faced with interesting and varied prob-
lems to tackle.  Each day brings with it exciting new challenges and 
satisfying rewards.  Good statisticians are never bored!

*********

“Professional baseball player, 
president of the United States 
and jeans-wearing cowboy - 
all great jobs, right?  Wrong, 
says a new book.”  
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Page 4

A-Mazeing Mathematics: Find Your Way 
Through Any Maze- Guaranteed

P. W. Aitchison
Mathematics Department

In the last issue we asked you to think of ways to find a path through a 
maze without getting lost or confused. Picture yourself at the start of a
European hedge maze, or a Manitoba corn maze with a large number of
passageways between hedges or corn plants, connected in a complicat-
ed arrangement. The objective is to find a route through the maze to a
specified destination. Soon after you start you will encounter junctions 
with many different route choices but you do not have a map or any 
way to distinguish the correct route from unproductive routes.

Surprisingly, you can traverse the maze successfully using just a few 
simple rules, no matter how large or complicated the maze. The only 
tool you need is a method to mark the entrances and exits from each 
junction you encounter; a number of identical pebbles that you can 
leave as junction markers.  You can pick up all of the pebbles when you 
exit, leaving no sign that you had ever been there.

The rules are just a list telling you exactly what to do in every possible
situation in the maze. Mathematicians and Computer Scientists call this 
list an algorithm. The one given here is a variation of one of the best 
known algorithms of graph theory,  depth-first search, used for search-
ing in graphs (that is, graphs that are a collection of nodes connected 
by edges). You use the algorithm on a maze by applying step 1 at the 
entrance to the maze, then every time you encounter a junction or a 
dead-end you choose the appropriate action from the list.

The algorithm (list of rules):

1)  First time at a junction and forward travel:  Put two pebbles at 
the passageway first used to enter a junction (including the entry to 
the maze). Choose any other passageway, put one pebble at the start 
and follow the passageway. This type of exploration is called forward 
travel.

2)  In forward travel if you encounter a dead end: Simply reverse 
direction, but now you are in backward travel mode (often called 
backtracking).

3)  In forward travel if you encounter a junction previously visited:
That is, the junction already has pebble markers. Do not enter this 
junction. Leave one marker pebble and reverse direction. You are now 
in backward travel.

4)  In backward travel if you come to a junction: This is a previously-
visited junction because you have previously been in  forward travel 
along this passageway. There are two possibilities:

  a)  At the junction, there is a passageway without a pebble marker:  
 Put a pebble marker at this passageway and follow it.  
 You are now back in forward travel again. 
  b)  At the junction, all passageways have pebble markers:   
 Pick up all of the pebbles at the junction (it will never be  
 visited again) and exit through the single passageway that had  
 two pebble markers. You are still in backward travel mode.

That’s all of the exploration rules! However, we have left out a couple 
of crucial points. How does the algorithm stop?

Stopping the algorithm: The algorithm ends naturally in two possible 
ways, both of which would be self-evident if you were traversing a 
real maze:
•  Success:  In forward travel mode you are successful and reach the 
end (destination) which is presumably some recognizable place. At 
this point there is a natural way to exit the maze. You reverse direction 
so you are in backward travel and follow rule 4b at junctions, without 
exploring anymore untraveled passageways. This will take you back 
to the start of the maze collecting pebbles on the way back.
•  Failure:   In backward travel mode you are back at the original 
entrance to the maze and there are no more untraveled passageways 
there, which means that all parts of the maze have been explored.  In 
this case rule, 4b applies and you will simply exit the maze. This can 
only happen if there is no path to the destination.  Actually this could 
also be a successful conclusion if your intention was not to reach a 
particular destination, but to simply explore all possible passageways 
in the maze. 

An example:
Here is a simple example; the same process works for a maze of any 
size or complexity.  The search uses the arbitrary rule that where there 
is a choice between two passageways, then always choose the left-
hand passageway.  The symbols used are:
•  Two circular dots represent the two pebbles used to mark the first 
passageway into a junction.
•   One square marker represents a single pebble at every passageway 
used to leave a junction.
•   Solid arrow represents forward travel.
•   A dashed arrow represents backward travel.

 The Maze Forward:placing pebbles at junctions

Backward travel then forward travel 
on new section, then backward 
travel again

Backward: Retrieve pebbles

Forward travel to a dead end Back then forward 

→

→

→

→

→



Conclusion:  The maze algorithm can be proved to work for any maze, 
even a 3-dimensional maze that cannot be drawn on a piece of paper.  
But algorithms can work, yet still be of little use. A famous example 
of this is the Travelling Salesman Problem that asks you to fi nd the 
route with the least possible travel time for a salesperson visiting a 
large number of cities.  This apparently simple problem does have a 
very simple solution algorithm, but it is not much use because it takes 
far too long to process the algorithm.  Even if there are only 50 cities 
the solution can be absurdly time consuming even on very powerful 
computers.

The maze algorithm is very effi cient because you never travel along a 
passageway more than twice.  Hence the time for carrying out the al-
gorithm is just a linear relationship with the length of passageways.  In 
algorithmic terms, a linear algorithm like this is considered to be very 
good.  The so-called worst case situation is a maze where every pas-
sageway is travelled exactly twice before fi nding the destination.  For 
example a maze has exactly two passageways at the entrance and one 
goes immediately to the destination.  If you chose the other passage-
way fi rst then you will traverse every passageway twice, eventually 
returning to the entrance where you will immediately fi nd the destina-
tion after going into the second passageway.

Is this the most effi cient algorithm possible?  The answer depends on 
how you defi ne “effi cient algorithm”.  If  it means less total length of 
passageways travelled before fi nding the destination, then the answer 
to the question is: no, it is not the most effi cient.  For example, on the 
third picture the route reversed direction into backward travel from the 
junction on the right hand side of the maze.  However, if we had kept 
track of the fact that there were no further untraveled passageways on 
the route then we could have simply headed straight back from the far 
right junction towards the entrance, omitting the backward travel loop 
shown in the bottom right of the fourth picture.  However, that version 
of the algorithm would leave behind uncollected pebbles in the maze 
and increasing the effi ciency has the downside of making the algorithm 
more complicated.

*******

Websites for Hamiltonian Graphs

                R. Padmanabhan
Mathematics  Department  

http://www-math.cudenver.edu/~wcherowi/courses/m4408/gtln12.html

http://www.swif.uniba.it/lei/foldop/foldoc.cgi?Hamiltonian+path

http://www.nist.gov/dads/HTML/hamiltonianCycle.html

http://planetmath.org/encyclopedia/HamiltonianPath.html

http://mathworld.wolfram.com/HamiltonianGraph.html

********

¿

Defi nitions With e’s
David S. Gunderson

Mathematics Department

A few special numbers occur so often in mathematics that they are 
given special names. For example, π ≈ 3.1416 is used for the ratio of 
a circle’s circumference to its diameter. Another famous number is the 
golden ratio,  often denoted by  τ or ø , which has a value of
 (1 +   5)/2 ≈ 1.61803.  (If a line segment AB is cut by a point C so 
that the ratios   |  CB  |

|  AC  |___
   and             are the same, this ratio is called the 

golden ratio. It can be found by solving a2 – a  – 1 = 0.) 

Perhaps the next most famous real number is the constant e (to 50 
decimal places):
e = 2.71828182845904523536028747135266249775724709369995...

It does not have just one simple defi nition like π, nor does it have a nice 
algebraic defi nition like τ  .  In high school, I was taught one defi nition, 
another in fi rst year calculus, and fi nally another in integral calculus; 
only then did I see that all of these defi nitions really determined the 
same number (though I won’t prove this fact here). Let’s look at a few 
different ways to defi ne e, beginning with the earliest defi nition to 
appear in print.

Using area under a hyperbola: This defi nition actually arises in 
integral calculus, but is the easiest to visualize. Examine the graph of
 y = 1/x for x > 0; the graph’s shape is called a hyperbola. For any real 
number t  ≥ 1,  consider the area under this hyperbola between x = 1 
 and x = t (and above the x-axis); call this area A(t).

for A(t) is ln(t) = ∫
1
     dx;  the function “ln” is now called the “natural 

logarithm” .

By slopes of exponential functions: Another way to defi ne e is in 
terms of exponential functions. Some examples of simple exponential 
functions are given by 2x or 10x. In these cases, the number 2 or 10 is 
called the base and x the exponent. Generally, an exponential function 
is given by f(x) = bx for some base b. When b > 1, these functions grow 
very fast, and their graphs are climbing when they cross the y-axis 
(when x = 0). If you graph y = 2x and y = 10x on the same axis, you will 
see that the second graph is ‘steeper’ when crossing the y-axis.

Many fi rst year calculus books defi ne e to be the unique base b so that 
the slope of the line tangent to the graph of y = bx as it crosses the 
y-axis is equal to 1 (which is totally uninspiring to me!). They use this 
as a defi nition, since they must fi rst discuss slopes (derivatives) before 
they discuss areas (integrals). For those having seen some calculus, 
this defi nition says that e is chosen so that if f(x) = ex, then f ′(0) = 1. 
Some books use the notation “exp(x)” before they use ex, to remind us 
of exponentiation, and so many think that this is where the “e” comes 
from. One can then later prove that these two defi nitions for e (one 
from ln, and one from slopes) defi ne the same number.

Page 5
(continued on Page 6)

1_
x

t

Observe that A(1) = 0 (since when t = 1,  
the area A(1) is the area of a small vertical 
segment, which is zero). As t increases 
from 1, the area  A(t) grows,  and with 
some careful graphing, one can see that A(t) 
eventually gets as large as one wants. Defi ne 
e as that unique number (around 2.7) so that 
A(e) = 1. For those who have studied integral 
calculus, the more common notation 

√
  _

|  AC  |
|  AB  |___
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transcendental, that is, is not a root of any polynomial (like the golden 
ratio is).  The number e is often introduced in calculus, but it appears
in most every branch of mathematics. Two common occurrences
(see [1] for details) involve compounded interest and probability (e.g., 
the hatcheck problem in combinatorics). See also [3] for a few more 
surprising places e shows up. For me, the most surprising place is in 
the formula eπi = -1; can you make sense of this?

Here are a few of the many wonderful websites regarding e (the last 
one contains “Top ln(e10) reasons why e is better than pi.”):
http://pi.lacim.uqam.ca/eng/records_en.html
http://mathforum.org/dr.math/faq/faq.e.html
http://mathforum.org/library/topics/about_e/
http://mathworld.wolfram.com/e.html (good bibliography)
http://members.aol.com/jeff570/constants.html
http://www.mu.org/~doug/exp/
http://www.maa.org/mathland/mathtrek_11_9_98.html

References
[1] M. Gardner, “The Transcendental Number e”, in The
Unexpected Hanging and Other Mathematical Diversions,
Chicago University Press, Chicago, IL, 1991.
[2] E. Maor, e: The Story of a Number, Princeton University
Press, Princeton NJ, 1994.
[3] H. S. Shultz and B. Leonard, Unexpected Occurrences
of the Number e, Mathematics Magazine, Vol. 62, No.
4, October 1989

*******

Magic With Magic Squares
R. Craigen

Mathematics Department
Let us consider square arrays of numbers, such as S, below:

The numbers in a square are called its entries.  The horizontal lines of 
numbers are its rows and the vertical lines are its columns.  Its diago-
nals are the two lines of numbers running corner-to-corner:  its for-
ward diagonal (top left to bottom right) and back diagonal (top right 
to bottom left).  Its row sums are the sums of the entries in the rows 
of the square; column sums and  diagonal sums are defined similarly.  
Collectively the rows, columns and diagonals are called the  lines of 
the square.  The order of a square is the number of its rows.

Thus, the square S above has order 3; its entries are 1,2,...,9.  Its first 
row is (1,2,3) and its third column is (3,6,9), its two diagonals are 
(1,5,9) and (3,5,7).  Its three row sums, three column sums, and two 
diagonal sums are 6, 15, 24; 12, 15, 18; 15 and 15, respectively.

Can the numbers in S be rearranged so that the eight line sums are
all equal?  More generally, can the numbers 1,2,...,n2  be arranged in 
a square, all of whose line sums are equal?  Such a square is called a  
magic square.

Magic squares have fascinated people for millenia.  The ancient
Chinese called them “Lo-Shu”, and they have appeared in old arabic
texts and in Medieval art.  Serious mathematicians study magic 
squares, but so do many hobbyists.  Many famous people, such as
Benjamin Franklin, have been interested in them.  The medieval artist
Albrecht Dürer’s engraving,  Melancholia, includes a magic square of 

Those who have studied logarithms know that taking logarithms
and exponentiation are inverse operations; logb(x) = y is the same as
x = by. Above, we defined e in terms of area ln(t); it can be shown 
that in fact ln(t) = loge(t), the logarithm to the base e, the “natural” 
logarithm. The two statements ln(x) = y and x = ey have the same 
meaning.

By a limit arising from slopes: Some texts define e by
 e = lim (1 +    )n = lim (1 + h)1/h .

 
With n = 2, the expression in the limit is (  )2 =    = 2.25, and with
 n = 3, one gets     ≈ 2.37, only a little closer to e. This definition is 
often introduced first just so that the derivative (slope) of the function 
f(x) = ex at x = 0 works out to be 1.

Newton’s formula for e: In 1669 Newton published a way to compute 
e by an infinite sum (but he never called it e).  This method is actually 
a consequence of some deep results in calculus but is very easy to use. 
In high school I was taught that

 e =         +   +    +   +   ...

(recall that 0! = 1 and n! = 1 · 2 · 3· · · · n) What does it mean to add up 
infinitely many things? You add them up from the beginning, keeping 
a running total (called a partial sum), and if these running totals 
approach a single number, then we say that this sum converges to this 
number. We won’t prove it, however you might persuade yourself that 
this sum converges by adding the first few terms; for example, 

1+1+   +   +    = 2.5+0.166666... +.04166666... = 2.708333....

and continuing. Using Newton’s formula, you can compute e to as 
many decimal places as you like fairly quickly! (Over a billion digits 
have been computed - see the first website listed below for the current 
record.) Interestingly enough, for any x, one can compute ex in a 
similar method by

ex = 
  
 +    +    +    +    + ....

By continued fractions: Every real number has a so-called continued 
fraction representation; I leave it as an exercise to ponder its meaning, 
but the continued fraction for e is rather beautiful and so I thought that 
I might share it with you:

e = 2 +________________
       1 + _____________
               +________________
    + _________________
             ______________
    

This can also be written as: e = 2+   (1+    (1+    (1+    (1+...)))).

It is hard to say who first identified this constant, though its existence 
was implied by the work of Napier in 1614 while studying logarithms 
and bases. The Swiss-German mathematician Leonhard Euler 
(pronounced “oiler”) used the symbol e in 1727 (in a note Meditation 
upon experiments made recently on the  firing of a cannon, which 
wasn’t published until 1862), and the symbol e first appeared in a 
published work in 1736 (in Euler’s Mechanica). Did Euler name the 
constant after himself? Probably not — my best guess is that since 
Euler defined (like in the first definition above) e as “that number 
whose hyperbolic logarithm is equal to 1”. In German, “einheit” means 
one-ness, or unity, so it is possible that this is how the symbol e was 
chosen. (In modern general algebraic settings, the symbol e is
often used to denote an identity element.)

None of the ways we have defined e is very simple. Euler proved e is 
irrational (not a simple fraction). In 1873, Hermite proved that e is 

n→∞
1_
n h→0+

3_
2

9_
464__
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1_
2
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Add P and Q entry by entry, and a magic square “magically’’ ap-
pears:
  P + Q =            =

How were the first rows of P and Q chosen?
Observe that every number from 1 to 9 can be expressed in exactly 
one way as a sum of an element of A = {0, 3, 6} and one from B ={1, 
2, 3}, and that every such sum appears in P + Q.  Every element of A 
appears in each line of P except the forward diagonal,  so the corre-
sponding line sums will all be  0 + 3 + 6 =  9.  Similarly,  every line 
of Q,  except for the back diagonal,  will have sum 1 + 2 + 3 = 6.   So 
every row and column sum of  P + Q  will be   9 + 6 = 15.

Now let us account for the diagonal sums.  As observed above, the 
forward diagonal sum of Q is 6.  In order for the forward diagonal of 
P + Q to have the magic sum 15, the forward diagonal of P must be 
9.  Since this diagonal is constant, the first row of P must begin with 
3.  Similarly considering the back diagonal, we see that the first row 
of Q must end with 2.  We thus ensure that the diagonal sums of P + 
Q are 15, and the square is magic.

Let us try this for order 5: The magic sum is 5(52 + 1)/2 = 65.  Every 
number from 1 to 25 appears exactly once as a sum of an element 
of A = {0, 5, 10, 15, 20} and an element of B = {1, 2, 3, 4, 5}. If as 
above, we form squares P (circulate a row composed of the elements 
of A to the right) and Q (circulate a row composed of the elements of 
B to the left),  P + Q  will have constant row and column sums equal 
to  0 + 5 + 10 + 15 + 20 + 1 + 2 + 3 + 4 + 5 = 65.

The forward diagonal sum of Q will be 1 + 2 + 3 + 4 + 5 = 15, so the 
first entry of the first row of P must be (65 - 15)/5 = 10.  Similarly 
we determine that last entry of the first row of Q must be (65 - 50)/5 
= 3.  We now have enough information to form P and Q, ensuring 
only that these conditions are satisfied.  Their sum is P + Q =

Check that this is indeed a magic square.

This method can be used to produce squares of arbitrarily large odd 
order.  See if you understand it well enough to:
a) construct a square of order 7;
b) construct a couple of squares of order 5 different from the  
 one above.

The next issue of Math Links will contain another article on Magic  
Squares, and a series of exercises based on the construction de-
scribed here.

*******

order 4 that cleverly reveals the year in which it was made, 1514.  
Some have attributed mystical properties to magic squares, as 
their name suggests.  Others just find them an interesting puzzle.

Our array S above is clearly not magic---while four of the
eight line sums have the same value (15) the other four are
different.  There is no magic square of order 2 (try it and see why!).
Rearranging the 9 numbers in S randomly will not easily produce a
magic square.  If you try, you may decide that the task is impossible.
Instead, let us tackle the problem analytically.

Call the common line sum, s, for a magic square of order n its magic 
sum.  What would be the magic sum for a square of order 3?  Since the 
three row sums are s, and every entry appears in exactly one row, the 
sum of the entries of the square, 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45, 
must be equal to 3s.  The magic sum is therefore s = 45/3 = 15.  There 
are exactly 8 ways to get 15 as a sum of three distinct numbers
from {1,2,3,...,9}: 15 = 1 + 5 + 9 = 1 + 6 + 8 = 2 + 4 + 9 = 2 + 5 + 8 
= 2 + 6 + 7 = 3 + 4 + 8 = 3 + 5+ 7 = 4 + 5 + 6.  Since an order three 
square has 8 line sums, each of the above sums must occur.

The middle entry of the square is in four lines (a row, a column, and 
both diagonals), and 5 is the only number appearing in four of the 
above sums, so the middle entry must be 5.  Similarly, since each of 
the four corners of the square appears in three lines they must be 2, 4, 
6 and 8. Since the diagonals sum to s = 15, the pairs (2, 8) and (4, 6) 
appear in opposite corners.  Thus, 2 and 4 appear along a side, and the 
number between them must be 15 - 2 - 4 = 9, and this side is (2, 9, 4).  
Similarly the other sides are (4, 3, 8), (8, 1, 6) and (6, 7, 2); with this 
information you can now construct the square , try it!

Every now and then some enthusiast with more time to play than to 
read claims to have constructed “the world’s largest known magic 
square”.  I will demonstrate, momentarily, why this is a silly claim, 
akin to claiming to have discovered “the largest positive integer”—
anyone who knows a simple trick can always produce a larger one.

Let us calculate the magic sum, s, for a square of order n.  The sum of 
the entries must be 1 + 2 + ···+ n2 = n2(n2 + 1)/2 (can you see how to 
get this?). Since each number from 1 to n2 appears in exactly one row 
and all n rows have sum s, we must have  ns = n2(n2 + 1)/2.  Thus,  s = 
n(n2+1)/2.  Taking n = 3, we obtain s = 3(32 + 1)/2 = 15, as before.  The 
magic sum for n = 4 is s = 4 · 17/2 = 34.

Do you suspect that our derivation of order 3 squares above can be 
used to get larger squares?  If so, try it in order 4. You will not find the 
analysis very helpful because there are too many possibilities; in larger 
orders, the situation is even worse. 

But here is a way to find an order 3 square that does generalize for 
larger squares.  We begin by forming two (non-magic) squares, P and 
Q, as follows:

The first row of P is (3, 0, 6) and the first row of Q is (1, 3, 2).  Subse-
quent rows of P are obtained by circulating the entries of the previous 
row to the right—by this we mean that each entry is shifted to the right 
by one position, except for the last entry, which we move to the first 
position.  Similarly we obtain subsequent rows of Q by circulating the 
first row to the left:
   P =          Q =  3  0  6

  6  3  0
  0  6  3

  1  3  2
  3  2  1
  2  1  3

 10  0   5   15  20
 20  10  0   5   15
 15  20  10  0   5
  5   15  20  10  0
  0   5   15  20  10

  +
  1  2  4  5  3
  2  4  5  3  1
  4  5  3  1  2
  5  3  1  2  4
  3  1  2  4  5

    =
   11  2   9   20  23
   22  14  5   8   16
   19  25  13  1   7
   10  18  21  12  4
   3   6   17  24 15

  3+1   0+3   6+2
  6+3   3+2   0+1 
  0+2   6+1   3+3   

  4  3  8   
  9  5  1
  2  7  6
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PROBLEM CORNER 

       D. Trim
 Mathematics Department

#
Dear Readers:

Welcome once again to  PROBLEM CORNER.  Here is the problem 
from the last column and its solution.
 
Problem:
If  n + 1 integers are chosen from the fi rst 2n  positive integers  
{1,2,...,2n},  at least one of them must divide another.  

Solution:
By factoring out 2’s, every positive integer can be expressed in the 
form a2b, where a is an odd integer and b is a nonnegative integer.  For 
example, 24 = 3 · 23 , 64 = 1 · 26 , and 25 = 25 · 20 .  In the set of integers 
{1,2,...,2n}, n are odd and all are different.  These will be possible val-
ues for  a.  When 2’s are factored from the even integers, values for a 
will be repetitions of those for the odds.  In other words, there are only 
n values for a.  Since n + 1 integers are being chosen, the Pigeon Hole 
principle states that at least two of them must have the same value for 
a.  Let them be a2b and a2c.  Clearly one of these divides the other.

Here is your new problem:
A psychologist observes groups of four individuals at a time.  In how 
many ways can the psychologist choose 5 groups of 4 from among 20 
people?

Send submissions on this problem to:

  S. Kangas, Managing Editor
  Manitoba Math Links
  Department of Mathematics
  The University of Manitoba
  Winnipeg, MB
  R3T 2N2
 

********

 

At a press conference held at the White House, 
President George W. Bush accused mathematicians 
and computer scientists in the U.S. of misusing 
classroom authority to promote a Democratic 
agenda.  “Every math or computer science depart-
ment offers an introduction to AlGore-ithms,” 
the president complained.  “But not a single one 
teaches GeorgeBush-ithms...”

������������

Bargain Math Books

David S. Gunderson
Mathematics Department

The University of Manitoba Bookstore has recently stocked a large 
number of Dover paperbacks in mathematics; these include
reprints of many classics, and most are a very affordable price. The 
Bookstore also has a wide selection of other inexpensive math books. 
In this column, we review both classics and  new releases, but will 
concentrate on those that are bargains.

Heinrich Dörrie, 100 Great Problems of Elementary Mathematics:
Their History and Solutions, translated by David Antin, Dover 
Publications, New York, 1965. Price: $21.95. Paperback, 395 pages.

What is remarkable about this book is the selection of problems.
Most look familiar; here they are given names and extensive
references. Dörrie has addressed head-on a signifi cant number 
of fundamental questions in mathematics. Most problems are 
understandable by an energetic high school student.  Many of the 
solutions are highly non-trivial, yet revealing the power of elementary 
techniques. Some of the discussions are a bit di ffi cult to follow, 
probably because this work was originally in German and the 
translation might be too literal in spots.  Here are some of the topics: 
the transcendence of e, the fundamental theorem of algebra, the fact 
that every prime number of the form 4n + 1 can be expressed as a sum 
of two squares in precisely one way, trisecting an angle, and Newton’s 
exponential series. This book can be a fantastic resource for teachers 
and energetic students alike.  I only discovered this book a year ago, 
and now wonder how I survived so long without it!

Mario Livio, The Golden Ratio: The Story of Phi, The World’s
Most Astonishing Number, Broadway Books, New York, 2002.
Price: $22.95. Paperback, 294 pages.

The golden ratio is often denoted by  τ (tau) or ø  (phi, pronounced
“fee”) and has a value (1 +  5)/2 ≈ 1.61803. If a line segment AB is cut

by a point C so that the ratios      and   

are the same, this ratio is called the golden ratio (or sometimes the 
“golden mean”). This number is found in the most unexpected places. 
For example, it is the ratio between the diagonal and side lengths in a 
regular pentagon. It is found in many aspects of art and architecture. It 
also appears in various topics which have nothing to do with geometry. 
This book takes the reader on a very gentle stroll through different 
gardens of science, nature, and art, slowing down just enough to point 
out where phi is hidden. The history and context surrounding each is 
fascinating! 

I have only one warning, this is a book that you will peek at while 
coming home from the bookstore and then get lost in it immediately. If 
you read it in bed, you might not want to turn the lights out. I think that 
any high school student will enjoy this volume; you need not be a math 
nut.

********

|  CB  |
|  AC  |___

|  AC  |
|  AB  |___
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