
Volume 5, Number 12, Winter 2005

A message from an applied math student

Darja Kalajdzievska

University of Manitoba

Although you might find yourself sitting in your math class thinking, “When am I ever going

to use this?”, mathematics is actually very relevant and useful in the real world.

Applied mathematics is a part of mathematics that describes objects and phenomena in the

universe using numbers, equations and theorems. It can be used to analyze everything from

the vibrations of a guitar string, to the crashing waves on the shore, to the flow of blood

through the human body. It also translates into almost every field—biology, engineering,

physics, management, economics, and even art.

Applied mathematicians are sought after in the work force. They do exciting jobs such as

writing and breaking codes for the military, helping to send shuttles to space, and analyzing

investment opportunities in the stock market.

Not only this, but there are also many jobs and research opportunities available for under-

graduate students who are just beginning their studies. It is possible to find work assisting

professors in research during the year and during the summers, and it is a much better work

experience and pay than working at a McDonald’s or a gas station. I can say this from per-

sonal experience. As a fourth-year applied math student focusing on mathematical problems

in biology, I have been offered research work during the term by professors, and scholarships

that last through the four months of summer have been my main source of income. I also find

that this field of study is a great one for interacting with professors and other students, as the

number of people studying applied math here at the University of Manitoba is relatively small.

My experience with applied math has been so good that I plan to continue my studies toward

a Master’s degree after I graduate, even though many jobs require only an undergraduate

degree.

Applied math is a great choice for someone who is curious about how the world around her

or him works, and for someone who is innovative and likes to be challenged.

So, next time you’re wondering why you need mathematics, think of this quote by James

Caballero:

“I advise my students to listen carefully the moment they decide to take no more

mathematics courses. They might be able to hear the sound of closing doors.”
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Every human activity, except mathemat-
ics, must come to an end.

—Paul Erdős (1913–1996)

Quoted by Bela Bollobas, Amer. Math. Monthly
105 (1998), 209.

In the upcoming issue: π is the limit, a discus-
sion of π and why the ratio of circumference to diameter
is the same for any circle.
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How many new mathematics
teachers will Manitoba need
next year? Ask Dr. Fermi!

Dr. Ralph Mason

Faculty of Education, U. of M.

In October, about 1000 Manitoba teachers attended the
Manitoba Association of Mathematics Teachers (MAMT)
Special Activity Group (SAG) Day. Imagine–one thousand
math teachers in one building! I’m imagining something
slightly differentI’m wondering if you have an experienced
math teacher or a brand new one this year. Let me think
about this. How many new math teachers are there in
a year? I don’t want to go look it up when I could just
think about it. Well, since teachers retire after about 30
years, then we could assume that 1/30 of those thousand
teachers will retire this year. That’s 33 new math teachers
we’ll need. Some teachers quit; that might be (I wonder
how we could estimate this proportion more accurately)
another 1/30, or maybe another 1/10 of those teachers. I
think I’ll go with 2/30, to split the difference, so that’s
another 67 math teachers. So far, so good.

What other factors might affect the number of new
math teachers we hire? Teachers go on parental leave, or
study leave, too, but others will return from parental leave
or study leave, so let’s call that a draw. Temporary leaves
are not going to make a large difference to the numbers
of math teachers we need from year to year. Maybe if
there are more students per class, there would be fewer
classes and we’d need fewer teachers. Or maybe if more
students chose to take more math (repeating PreCalculus
30S, maybe, or taking two different math classes in grade
11) than last year, we’d need more teachers. But I can’t
predict changes to those factors, so I’ll assume that the
total number of math teachers we need won’t change.

Here’s a possibility. Some teachers who teach math this
year might switch to other subjects. But wait a minute.
Other teachers might switch from other subjects into math,
and I can’t think of a reason that more would switch one
way compared to the other. So that is another factor that
won’t affect the number I’m counting, but I’m glad I con-
sidered it. I know. What about math teachers who move
up to roles as vice-principals or consultants? Not many
teachers will move in the reverse direction, so this will
mean there will be vacancies. Let’s see: how many teachers
might move up? If we think that there is one full-time ad-
ministrator or consultant for every 10 teachers, then there
would be 100 administrators for those 1000 math teachers.
(There would be 100 administrators for every 1000 teach-
ers of other subjects, too, presumably, but we’ll only look
at the ones that were teachers.) If people are administra-
tors or consultants for, say, 10 years each on average, then
1/10 of those positions will be filled each year. 1/10 of 100
new administrators and consultants will mean 10 vacancies
for new math teachers to fill. How are we doing? 33 + 67
+ 10 = 110 new math teachers.

This kind of thinking is called Fermi thinking, named
after Enrico Fermi, a famous physicist who liked to ask

questions like, How many piano tuners do you think there
are in New York City? Such questions give people a chance
to exercise their quantitative reasoning, and to communi-
cate their mathematical reasoning in convincing ways. In
effect, it’s a chance to practice proportional reasoning and
mathematical justifications. If I wanted to really show off
when I answer a question like the number of new math
teachers that Manitoba needs, I could think about upper
and lower limits for each element of my thinking. But in
the thinking I shared above, I was not very fancy in my
work; I was aiming for a quick and reasonable answer, and
that’s what I got.

It would be a different kind of task if someone re-
ally needed to accurately predict the number of new math
teachers that Manitoba needs. We’d have to find more
(and accurate) information before drawing our conclusions.
(For example, the people who are deciding whether to use
generalists or math specialists to teach grade 7 and 8 math
are going to affect that number, so they would need more
accurate information than this.) That would be a worth-
while task, but it’s not Fermi thinking. Fermi thinking is
not interested in accurate numbers; it’s interested in first-
quality mathematical reasoning.

But Fermi thinking is more fun to do than it is to read
about. Here’s one for you to try. And it will help you
fix a big flaw in my own work, above. The number of
math teachers in Manitoba is not going to be equal to
the number of teachers who attend the MAMT SAG Day.
It’s much higher, for a variety of reasons we do not need
to consider. Using that SAG Day number started me off
somewhat badly. Instead, here’s a better starting point of
a different kind. According to the Winnipeg Free Press
(2004 Sept 30, p. A2), the population of Manitoba on
July 1, 2004 was 1,170,268 people. If you figure out how
many of them are students, and how many math teachers
we need for those students, you can use Fermi thinking to
figure out how many math teachers there are in Manitoba.

If you give the question a try, I’d be interested in your
strategies. I’m especially interested in how you choose to
be efficient in your thinking: it could be a two-week re-
search exercise if you forget the idea behind Fermi ques-
tions is to use estimation wisely to generate a reasonable
and justifiable answer quickly!

If you send me a record of your thinking, I’ll respond
with some comments. My email is

masonrt@ms.umanitoba.ca.

Mathematical rigor is like clothing; in its
style it ought to suit the occasion, and it
diminishes comfort and restricts freedom
of movement if it is either too loose or too
tight.

—G. F. Simmons
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Is that integer a perfect
square?

R. G. Woods

Department of Mathematics, U of M

Is k = 9, 487, 364, 927, 452 a perfect square, that is, is
there a whole number n such that k = n2? Even using a
calculator, you might find this tough to decide. Can we
answer this question without using brute calculation?

Yes (in this case). There are some digits that cannot
appear in the “units place” of a perfect square (the units
place is the last digit, e.g., the last 2 in the above k.)
Consider the following table of possibilities:

last digit last digit Reason Example
of n of n2

0 0 0 × 0 = 0 402 = 1600
1 1 1 × 1 = 1 2212 = 73, 441
2 4 2 × 2 = 4 1022 = 10, 404
3 9 3 × 3 = 9 832 = 6889
4 6 4 × 4 = 16 2542 = 64, 516
5 5 5 × 5 = 25 352 = 1225

6 6 6 × 6 = 36
...

7 9 7 × 7 = 49 get the
8 4 8 × 8 = 64 idea?

9 1 9 × 9 = 81
...

Notice that there are four digits missing from the sec-
ond column in the above table, namely 2,3,7, and 8. No
perfect square can have any of these four digits in the units
place! In particular, the integer k above has a 2 in its units
place, so k is not a perfect square. That was easy! (By the
way, notice the symmetry in the second column. What’s
the significance?)

Is the converse true? In other words, is every integer
whose units digit appears in the second column a perfect
square? No—consider 10, 11, 14, 19, 136, and 1,000,005 for
example. So maybe we need some other tests for showing
that an integer is not a perfect square.

If n is a positive integer and we divide it by 3, there
are three possibilities—either n is divisible by 3, or the
remainder is 1, or the remainder is 2. In other words,
either n is of the form n = 3m, n = 3m+1, or n = 3m+2
for some non-negative integer m. Let’s see what n2 looks
like in either of these three cases.

If n = then n2= remainder upon
dividing n2 by 3

3m 9m2 = 3(3m2) 0
3m + 1 9m2 + 6m + 1 =

3(3m2 + 2m) + 1 1
3m + 2 9m2 + 12m + 4=

3(3m2 + 4m + 1) + 1 1

(Notice that if m is an integer, then any polynomial in
m with integer coefficients is also an integer.)

We have just shown that if we divide n2 by 3, then
the remainder is never 2, or in mathspeak, “n2 is never
congruent to 2 modulo 3”, no matter what the integer n

is. For example, is 937,344,029 a perfect square? Dividing
this number by three, 937, 344, 029 = 3(312, 448, 009) + 2,
the remainder is 2, and so 937,344,029 is not a perfect
square.

Let’s try the same thing using 4 instead of 3. If an
integer n is not a multiple of 4, then there are three possible
remainders, namely 1,2, and 3. Thus there is some integer
m so that either n = 4m, n = 4m + 1, n = 4m + 2, or
n = 4m + 3. We get the following table of possibilities
(like we did for 3 above).

If n = then n2= remainder upon
dividing n2 by 4

4m 16m2 = 4(4m2) 0
4m + 1 16m2 + 8m + 1 =

4(4m2 + 2m) + 1 1
4m + 2 16m2 + 16m + 4=

4(4m2 + 4m + 1) 0
4m + 3 16m2 + 12m + 9 =

4(4m2 + 3m + 2) + 1 1

Thus if we divide a perfect square by 4, the remainder is
never 2 or 3. For example, though neither of the first two
tests allows us to conclude that 120,031 is not a perfect
square (the remainder upon division by 3 is 1). When
dividing this number by 4, the remainder is 3, and so it
cannot be a perfect square.

What we have done for 3 and 4 can be done for any
other integer. You might check out for yourself what the
possible remainders are when you divide a perfect square
by 7. You might have noticed that in the first table that
we produced, we were finding what the possible remainders
are when you divide a perfect square by 10. If you do it,
notice that the pattern in the list of possible remainders
from division by 7 is similar to the pattern of remainders
that we got by division by 10, but does not resemble the
pattern of remainders that we got from 3 or 4. What is
going on? Is there some underlying phenomenon that we
have not identified?

One final fact: as you probably know, a prime number
is an integer whose only integer divisors are 1 and itself
[Editor’s note: Today, 1 is not considered a prime.] It’s
a fact that every integer larger than 1 can be written in
a unique fashion as a product of integer powers of primes.
It immediately follows that an integer larger than 1 is a
perfect square if and only if each of the exponents in this
product is even.

Here is a challenge for you. What are the possible val-
ues for non-negative integers n and k (where k ≤ n) so
that when you divide n2 by k, the remainder is n− 1? See
the next issue of Math Links for an answer.

Mathematics is like checkers in being suit-
able for the young, not too difficult, and
without peril to the state.

—Plato (427–347 B.C.)
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Cool Websites

R. Padmanabhan

Department of Mathematics

Mathematics in stamps

A postage stamp is, in a manner of speaking, a cul-
tural ambassador of the country of issue. Philatelists all
over the world take the postage stamp as an educational
medium. They are attractive vehicles for conveying math-
ematical concepts and developments as well. Many coun-
tries around the world have celebrated significant mathe-
matical achievements by issuing attractive commemorative
postage stamps. In a recent publication on this topic (see
[1]), Robin Wilson walks through 5000 years of mathemat-
ical history, visiting Egypt, Greece, China, India and even
the Mayas and Incas. This is NOT a topic in the history of
mathematics. It is, rather, a selective account of aspects of
the history of mathematics that have appeared on postage
stamps from across the world. Developments in Islamic
mathematics, the middle ages and the rebirth of Euro-
pean mathematics are described. Wilson includes mathe-
matically related inventions such as calendars, maps and
globes on his way. Euclid, Newton (see [3]), Albert Ein-
stein, Computers, prime numbers, Fermat’s Last Theorem
(shown above), Möbius band, mathematical instruments
and fractals are some of the popular themes frequently oc-
curring in postage stamps.

Impossible figures have proved to be irresistibly fasci-
nating to artists, mathematicians and the stamp designers.
In 1934, the Swedish artist Oscar Reutersvrd drew the first
impossible triangle, an arrangement of nine cubes.

Three of his impossible figures were later featured in
a set of Swedish stamps, issued in 1982 to commemorate
his work (visit [6]). An exhibit of such a collage of postage
stamps of various mathematical themes issued by countries
around the globe will be an ideal Science Fair Project.

Apart from bringing mathematical ideas in pictures,
such an exhibit will also demonstrate that mathematics, as
a unifying theme, knows no geographical boundaries and
will thus take us one step closer to the utopian concept of
global village.

[1] Robin J. Wilson, Stamping Through Mathematics.
[2] http://www.oliver-faulhaber.de/mathstamps.htm#wilson
[3] http://www.geocities.com/newtonstamp/
[4] http://www.math.wfu.edu/ kuz/Stamps/stamppage.htm
[5] http://www.oliver-faulhaber.de/mathstamps.htm
[6] http://wwwhome.cs.utwente.nl/̃jagersaa/ Impossible.html

[7] http://www.math.ttu.edu/msu/philamath.html (this is a
journal of mathematical philately).

Answers to Classic Puzzles: P1: one—the rest were

coming from St. Ives! P2: On the 28th day, it begins at the 27 foot level,

so goes up the remaining 3 feet and out! P3: Hint: first draw a right

angle triangle covering seven dots not passing through the center, nor

one of the upper corners. P4: Two out of three.
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“Mommy, where do beautiful

fractals come from?”

Sasho Kalajdevski

Department of Mathematics, U of M

“Well, storks bring them, my dear. But unlike baby-
carrying storks, these ones carry smaller storks, and each
smaller stork carries even a smaller stork, which in turn
caries even a smaller stork, etc., continuing that without
end. I made a picture of such a storks-carrying-storks for
you to see.”

Fractals are like that: objects that are self-similar, and
usually generated by some procedure that is carried out
(iterated) infinitely many times. There are various types
of fractals, some simple, some rather complicated. The
stork-fractal shown above is relatively simple. Below we
show one that is somewhat more complicated; we call it a
Julia fractal.

Computer-generated pictures of the same type as the
Julia fractal we see here brought this subject to life, both
from the mathematical and from the artistic point of view.
Our goal in this note is to explain how this particular Julia
fractal was generated.

Initially we have a semi-line (a ray) starting at the point
denoted by O (origin), a unit distance that we mark on
that semi-line, and a fixed vector (arrow), which we denote
by v. The vector v is chosen in the direction that goes
0.195875 units to the right and 0.5765 units upwards. You
will notice how carefully we choose the vector: in this game
small changes in the starting data may result in significant
changes in the final object. The vector v and the fixed
semi-line are shown in the next picture.

Now we move points in the plane according to the fol-
lowing prescription (we refer to the following picture be-
low): first rotate the point A around O by the angle α and
then move the newly obtained intermediate point A′ in the
direction of the vector v arriving at A1.

Perform the same procedure to the new point: rotate
A1 around O by a new angle, the angle formed by the hor-
izontal semi-line and OA1, then move the new point A′

2
in

the direction of the vector v, arriving at a point A2. Keep
doing this to get a sequence of points A,A1, A2, A3, . . ..
Sometimes, the starting point A will generate a sequence of
points that go farther and farther from the point O, while
some other positions of the starting point A will generate a
sequence of points that will hang around O. We illustrate
these two possibilities in the next two pictures (we connect
consecutive points in the sequences in order to track the
movement of the points under our procedure).

In the first picture, we see that at one moment the
point takes off and goes far from O, while in the second
picture the sequence of points hangs around keeping tight
together. The starting points A that yield sequences of
points that do no go far away from O is called the
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prisoner set for our procedure, while the other starting
points A that yield sequences of points that eventually go
far away from O is called the escape set for our transfor-
mation.

Here is then the punch line: the boundary between the
prisoner set and the escape set is what we have depicted
in the Julia fractal shown above. We have described above
a standard procedure for generating fractals: a specific
movement of the points in the plane generated the bound-
ary of the prisoner and the escape sets. Other movement
will, of course, generate other prisoner/escape sets, and so,
will produce other fractal pictures. One more example is
given below: a mask-like fractal (that we superimpose over
a photo of a girl) was obtained by following the same idea
as above (but the movement of points in the procedure was
different). For details, take university math.

Classic Puzzles

D. S. Gunderson

Department of Mathematics, U of M

First, the answer to the last classic puzzle: arrange the
matches to make the figure 4.

The following four puzzles, many of which you might
recognize all appear in Marcel Danesi’s book, The Puzzle
instinct: the meaning of puzzles in human life (Indiana
University Press, 2002). Danesi has put together what
looks like a scholarly work that discusses how puzzles seem
to be central to the human psychology; I highly recommend
it. More than just mathematical puzzles are discussed. It
is interesting to note that many modern puzzles are just
versions of older ones, some many thousands of years old!

An eighteenth-century popular nursery rhyme states:

As I was going to St. Ives
I met a man with seven wives.
Each wife had seven sacks,
Each sack had seven kits,
Kits, cats, sacks, wives,
How many were going to St. Ives?

Apparently, a version of this puzzle first appeared as Prob-
lem 79 in the Rhind Papyrus (written nearly 4000 years
ago), and another was given by Fibonacci (in Liber Abaci,
1202), and since the papyrus was only found and deci-
phered in the 19th century, these versions were indepen-
dent. The Fibonacci version had seven women, each with
seven mules, each mule carrying seven sacks, each sack
holding seven loaves, to slice each loaf there are seven
knives, and for each knife, seven sheaths. How many are
there altogether: women, mules, sacks, loaves, knives, sheaths?
The answer is

71 + 72 + 73 + 74 + 75 + 76 = 137, 256.

Here are four problems; answers appear on page 5 (try not
to peek!).

P1: How many are going to St. Ives?

Here is another from Fibonacci (that has found its way
into modern puzzle folklore):

P2: A snake is at the bottom of a 30-foot well.
Each day it crawls up 3 feet and slips back 2
feet. At that rate, when will the snake be able
to reach the top of the well?

The answer is a bit surprising! Here are two more classics:

P3: Put nine dots in a 3 by 3 array. Using
only three straight lines, draw lines through all
nine dots.

Finally, one from Lewis Carroll:

P4: A bag contains one counter, known to be
either white or black. A white counter is put
in, the bag shaken, and a counter drawn out,
which proves to be white. What is now the
chance of drawing a white counter?
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Mathematical Partnerships 2004

Christine Ottawa

Mathematics Consultant

Winnipeg School Division

In 2004 a variety of mathematical opportuni-

ties occurred for students and teachers in the Win-

nipeg School Division as a result of collaborations

with the Department of Mathematics at the Uni-

versity of Manitoba. These included:

• an information session for 25 high school math-

ematics teachers with faculty members from

the Department of Mathematics organized

and facilitated by Dr. Tom Berry

• a tour of the University of Manitoba for Se-

nior 1 Mathematics students at Kelvin High

School

• presentations by Dr. David Gunderson to

Senior 1 students in the Enriched Mathemat-

ics course at Kelvin High School on Platonic

Solids, the Golden Mean, Penrose Tiles, etc.

• participation by students in the 2004 Sum-

mer Math Camp at the University of Mani-

toba

• presentations by faculty members from the

Department of Mathematics on enrichment

topics to the students in the Calculus course

at Sisler High School

• a copresentation by Dr. Gunderson and Chris-

tine Ottawa to high school mathematics teach-

ers in the Winnipeg School Division on Math-

ematical Literacy: More Than Numbers and

Words

• a presentation by Dr. Gunderson to Senior 1

students at Churchill High School on graphs

and applications of graphs

These opportunities are welcomed as they pro-
vide perspectives and insights into the language
of mathematics, the strategies necessary for solv-
ing problems in mathematics, the applications of
mathematics, the thinking required in mathemat-
ics and the appreciation for mathematics. Sin-
cere thanks is extended to Dr. Gunderson, Dr.
Berry and faculty members from the Department
of Mathematics for facilitating these exciting ex-
periences in mathematics for the students and teach-
ers in the Winnipeg School Division. We hope to
continue these partnerships in 2005!

Problem corner

D. Trim

Department of Mathematics

Dear Readers:

Welcome once again to the PROBLEM COR-

NER. Here is the problem from the last column

and its solution: Show that the second last digit

of 2137753 cannot be even.

The last digits of 2137, 21372, 21373, 21374,

and 21375 are 7, 9, 3, 1, and 7, respectively. Since

753 ≡ 1mod 4, it follows that the last digit of

2137753 is 7. Because 2137 ≡ 1mod 4, it also fol-

lows that 2137753 ≡ 1mod 4. Since the two-digit

numbers 07, 27, 47, 67, and 87 are not congruent

to 1 modulo 4, it follows that the second last digit

of 2137753 cannot be even.

The Glenlawn Collegiate Math Club submitted

a correct solution to the problem. They squared

37 and wrote down the last two digits. These they

multiplied by 37 and once again wrote down only

the last two digits. In effect, they were finding the

last two digits of powers of 37 which would also

be the last two digits of powers of 2137. They

found that the last two digits of 3721 were once

again 37, so that the last two digits would now

cycle. Using modular arithmetic, they were then

able to conclude that the last two digits of 2137753

are 97. Well done Glenlawn! You were perhaps

fortunate that the cycle was so short; it could have

been closer to 100. But not only did you prove

that the second last digit could not be even as the

problem required, you actually found it to be 9.

Congratulations to you all. Perhaps this could be

a challenge to other Math clubs to see who can

submit correct solutions and who can do it first.

Send submissions on the next problem to:
S. Kangas,
Department of Mathematics,
The University of Manitoba,
Winnipeg, MB

R3T 2N2

Here is your new problem: You are doing a
jigsaw puzzle with 1500 pieces. Each day that you
fit pieces together there are fewer pieces left, and
therefore the puzzle becomes easier. Assuming
that you can fit one extra piece each day compared
to the day before, and you fit 20 pieces on the first
day, on what day do you finish the puzzle and how
many pieces do you fit on the last day?


