UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS

Graduate Comprehensive Exam in Topology

Friday April 24, 2015

14:00 to 19:00 (NO extra time will be given.)

Examiners: D. Krepski S. Kalajdzievski (coordinator) A. Clay

INSTRUCTIONS:

You have **five** hours to complete the exam.

The exam consists of this cover page and 5 pages of questions.

You must answer all seven (7) of the questions in Part A. For each of Part B and Part C you have a choice of questions. Answer any three (3) of the four (4) questions in each Part B and Part C.

For either Part B or Part C, you may attempt all four questions in that Part if you like, **but if you attempt all four questions appearing in that part, you must clearly indicate which answers are to be evaluated**. In the absence of any other indication, your solutions will be evaluated in the order that they are presented in your examination booklets.

To pass this exam, you must obtain a score of at least 70% in each of Parts A, B and C.

PART A Short answer questions

Answer all of Questions 1 through 8. The point values for each question are indicated in square brackets [].

[6] Question 1.

- (a) Give the definition of a second countable space and a first countable space.
- (b) Show that every second countable space is first countable.
- (c) Give the definition of the subspace topology.
- (d) Suppose that X is a second countable space. If $Y \subset X$ is given the subspace topology, show that Y is a second countable space.

$[6] \qquad$ **Question 2.**

A topological space is called *totally disconnected* if every connected component is a singleton. Prove that any countably infinite metric space is totally disconnected.

- [6] Question 3. Let X be a linearly ordered set. The topology generated by basis sets of the form $S_a = \{x | x > a\}$, together with X itself, is called the right order topology on X.
 - (a) Define what it means for a space to be each of the following: T_0 , T_1 , or T_2 .
 - (b) Determine whether or not X with the right order topology is T_0 , T_1 , or T_2 .
 - (c) Show that X is compact if and only if it contains a smallest element.

[6] Question 4.

- (a) Define (in terms of open subsets in a space X) what it means to say that a set B is a dense subset of a space X.
- (b) Prove that B is dense in X if and only if $\overline{B} = X$.
- (c) Show that if B_j is dense in X_j , $j \in J$, then $\prod_{i \in J} B_j$ is dense in $\prod_{i \in J} X_j$.

[6] Question 5.

Set $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$, and let $f : D \to D$ be a homeomorphism.

- (a) Let L be the line segment connecting $A, B \in \partial D, A \neq B$. Show that f(L) is not a subset of ∂D .
- (b) Show that if $x \in \partial D$, then $f(x) \in \partial D$.
- (c) Show that \mathbb{R}^2 is not homeomorphic to \mathbb{R}^3 .

[6] Question 6.

- (a) State the definition of homotopic maps.
- (b) Let $f: X \to \mathbb{R} \setminus \{0\}$ be a continuous map. Find a mapping $g: X \to \mathbb{R} \setminus \{0\}$ such that $g(x)^2 = 1$ for all x and such that f is homotopic to g. [Hint: find g and then an explicit homotopy between f and g.]

$[6] \qquad$ **Question 7.**

- (a) State the definition of a covering space (\tilde{X}, p) of a space X.
- (b) Show that the covering mapping $p: \tilde{X} \to X$ is always open.
- (c) Describe and depict a two-sheeted covering space of $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \cup \{(x, 0) \in \mathbb{R}^2 : 1 \le x \le 2\} \cup \{(x, y) \in \mathbb{R}^2 : (x 3)^2 + y^2 = 1\}.$

PART B Point-set Topology

Answer 3 of Questions 8 through 11:

[10] Question 8.

Suppose that $A \subset X$. Let $f : A \to Y$ be a continuous map where Y is Hausdorff. If $g_1, g_2 : \overline{A} \to Y$ are continuous maps with $g_1|_A = g_2|_A = f$, then $g_1 = g_2$.

[10] **Question 9.** Let X be a non-empty set with the co-countable topology (i.e. non-empty open sets are complements of countable sets). Show that X is Lindelöf.

[10] **Question 10.**

- (a) State Urysohn's Lemma and Tietze's Extension Theorem.
- (b) Prove that Tietze's Extension Theorem implies Urysohn's Lemma.

[10] **Question 11.**

- (a) Show that if X is Hausdorff, and if $A_i, i \in I$, are compact subsets of X, then $\bigcap_{i \in I} A_i$ is compact.
- (b) Find a space X and two compact subsets of X such that their intersection is not compact.

PART C Algebraic Topology

Answer 3 of Questions 12 through 15:

[10] **Question 12.** Let $S^1 \vee S^1$ denote a bouquet of two circles (two circles joined at a single point). Show that there do not exist continuous maps $f: S^1 \vee S^1 \to S^1 \times S^1$ and $g: S^1 \times S^1 \to S^1 \vee S^1$ such that $g \circ f = id$.

[10] **Question 13.**

For a topological space X, the cone of X is the quotient $C(X) = (X \times [0,1])/\sim$ where $(x,0) \sim (x',0)$ for all $x, x' \in X$; while the suspension of X is the quotient $S(X) = (X \times [0,1])/\sim$ where $(x,0) \sim (x',0)$ and $(x,1) \sim (x',1)$ for all $x, x' \in X$. Assume X is path connected.

- (a) Show that C(X) is simply connected. (Hint: In fact, it is contractible!)
- (b) Show that S(X) is simply connected. (Hint: Use Seifert-van-Kampen and use part (a).)

[10] **Question 14.** Let (\tilde{X}, p) be a covering space of X.

- (a) Show that the induced homomorphism $p_* : \pi_1(\tilde{X}) \to \pi_1(X)$ is always a monomorphism. [You may use the basic results on lifting paths.]
- (b) Describe and depict a covering space (\tilde{X}, p) of the torus $T^2 = S^1 \times S^1$ such that $p_*(\tilde{X}) \cong \mathbb{Z} \oplus \{0\}$, where $\mathbb{Z} \oplus \{0\} \subset \mathbb{Z} \oplus \mathbb{Z} \cong \pi_1(T^2)$

[10] Question 15.

- (a) Compute the knot group of the trefoil knot (see the figure on the next page). Show your work.
- (b) Let G_1 and G_2 be the knot group of knots K_1 and K_2 , respectively. Suppose there is a plane in \mathbb{R}^3 that separates K_1 and K_2 . Show that $\pi_1(\mathbb{R}^3 \setminus (K_1 \cup K_2)) = G_1 * G_2$.

