
Introductory Numerical Analysis
This unit consists of four questions worth a total of 40 marks. Answer all questions.

1. (a) [4 points] Let f be a smooth function. Show that

f ′′(x0) =
f(x0 + h)− 2f(x0) + f(x0 − h)

h2
− h2

12
f (4)(ξ)

for some ξ ∈ [x0 − h, x0 + h]. State which theorems you have used in this proof.

(b) [4 points] Suppose that |f (4)(x)| ≤ M for all x ∈ [x0 − h, x0 + h]. Suppose that all numerical
evaluations of f have round off errors bounded by δ. Find an upper bound for the total error in
approximating f ′′(x0) using the centered difference approximation f(x0+h)−2f(x0)+f(x0−h)

h2 .

(c) [2 points] Find the value of h (in terms of M and δ) that will minimize the total error bound.

2. (a) [5 points] Find the unique polynomial of degree at most four that interpolates f(n3) = 0 for
n = −1, 0, 1, 2, 3. (No simplification is necessary.)

(b) [5 points] Let x0 < x1 < ... < xn and Ln,k(x) be the fundamental Lagrange polynomial corre-
sponding to xk. Prove that

n∑
k=0

Ln,k(x) = 1.

3. [10 points] Consider the following initial value problem

y′ = f(y), y(t0) = y0, (*)

where y0 ∈ R and f : R→ R. Heun’s method for the initial value problem is given by

w0 = y0,

wi+1 = wi +
h

4

[
f(wi) + 3f

(
wi +

2

3
hf(wi)

)]
,

where h is the fixed stepsize. Give the local truncation error of this method. What is the order of
the method?

4. Consider the initial value problem given in (*) and suppose that y0 ∈ Rn and f : Rn → Rn. The
backward Euler method for the system y′ = f(y) (for y ∈ Rn) is given by

w0 = y0,

wi+1 = wi + hf(wi+1).

where h is the fixed stepsize. Recall that Newton’s method for finding the zero of a function g : Rn →
Rn × Rn is given by the iteration

xk+1 = G(xk),

where G(x) = x− J(x)−1g(x) and J(x) is the Jacobian matrix of g evaluated at x.

(a) [1 point] Given f , wi and h, write down a function g(x) such that the Backward Euler update
wi+1 must satisfy g(wi+1) = 0.

(b) [4 points] Consider the backward Euler method applied to the linear system u′ = Au where
A ∈ Rn×n and u(0) = u0 ∈ Rn. Suppose that h−1 is not an eigenvalue of A. Find an expression
for the unique solution wi+1 to the backward Euler equation in this case.

(c) [5 points] Suppose that we solve for the backward Euler update wi+1 of the linear system in part
(b) by Newton iteration. This means we set wi+1 = limk→∞ xk where xk+1 = G(xk) for some
appropriate G. Find an expression for G(x) in terms of A and show that the Newton iteration
converges in one step to the solution in part (b).



Approximation Theory
This unit consists of five questions worth a total of 40 marks. Answer

all questions.

1. [6 points] Prove that for any continuous f : [0,∞)→ R that has

a finite limit limx→∞ f(x) and for any ε > 0 there exist positive integer

n and real numbers ak, k = 0, . . . , n, such that∣∣∣∣∣f(x)−
n∑
k=0

ake
−kx

∣∣∣∣∣ < ε for all x ≥ 0.

2. [8 points] Prove that

En(xπ+)C[−1,1] ≤ cn−3, n ≥ 1,

where c is a positive absolute constant and x+ = max{x, 0}. (Here

En(f)C[−1,1] denotes the error of the best uniform approximation of f

on [−1, 1] by algebraic polynomials of degree ≤ n.)

3. [8 points] Using Bernstein’s inequality, prove that for any trigono-

metric polynomial τn of degree ≤ n, the inequality

‖τn‖L1([−π,π]) ≥
c

n
‖τn‖C([−π,π])

is valid, where c is some positive constant independent of n.

4. [7 points] Let L(x, g) be the Lagrange interpolation polynomial of

degree ≤ m interpolating a function g ∈ C[0, 1] at the points xj = j
m

,

j = 0, . . . ,m, m ≥ 1. Prove that

‖L(·, g)‖C[0,1] ≤ (m+ 1)m+1‖g‖C[0,1].

5. [11 points] Using the usual Whitney’s inequality, prove the follow-

ing shape preserving version of this inequality: if f ∈ C[0, 1] is convex

on [0, 1], then there exists a convex on [0, 1] polynomial p of degree 2

satisfying

‖f − p‖C[0,1] ≤ cω3(1, f, [0, 1])

with a positive absolute constant c. (Here ω3(1, f, [0, 1]) denotes the

usual third order modulus of smoothness of f on [0, 1] with step 1.)

(Hints: choose p as an appropriate Lagrange polynomial; result of the

previous problem may be useful.)



Numerical Analysis of PDEs
This unit consists of seven questions worth 10 marks each. Answer four questions. You

may attempt as many questions as you like in this unit; however, if you attempt more
than four questions, you must clearly indicate which answers you want us to mark. In
the absence of any explicit indication, we will mark respectively the first four questions
for this unit.

1. [10 points] For the Poisson equation

−1

r
(rur)r −

uθθ
r2

= f

on the unit disk, approximate the equation by a second order finite difference scheme
using polar coordinates ri = i∆r, θj = j∆θ. Specify the discretization scheme at the
origin.

2. [10 points] Analyze the stability of the Crank-Nicholson scheme for the heat equation

ut = uxx + f(x, t), x ∈ (0, 1), t > 0

under the conditions

u(x, t) = 0, x = 0, x = 1, t > 0,

u(x, 0) = g(x), x ∈ (0, 1).

3. [10 points] For the equation uxx + uyy − 2u = f in Ω where Ω is a square, f is smooth
and u = 0 on the boundary, derive the usual second order difference approximation. Find
an expression for the consistency error O(k2).

4. [10 points] Develop a second order finite difference scheme for the equation

utt = uxx + u, x ∈ (0, 1), t > 0,

u(x, 0) = 0, ut(x, 0) = g(x), u(0, t) = u(1, t) = 0.

Show that the explicit scheme is consistent and determine the stability if the solution lies

in C4(Ω
T

).

5. [10 points] Consider the PDE −∆u + u = f ∈ L2, where u ∈ H1
0 (Ω) ∩H2(Ω). Let Vh

be the usual finite element subspace of H1
0 (Ω). Derive the weak form of the PDE and its

finite element equations. Estimate the condition number of the stiffness matrix.

6. [10 points] For the Galerkin method discuss the solution of Lu = f for u ∈ V ′, a
separable Hilbert space, where f ∈ V ′. If the bilinear form is bounded and coercive, show
the convergence of the Galerkin scheme.

7. [10 points] Use the Richardson iteration x(n+1) = x(n) +ω(b−Ax(n)), ω a real number,
to solve the linear system Ax = b where A has positive real eigenvalues. Starting with
any initiall guess find values of ω for which the iteration converges. Also find the best
value of ω which minimizes the spectral radius of the iteration matrix.


