
COMP 1010 - Introduction to Computer Science 1

Course Description

Calendar entry

(Lab	Required)	An	introduction	to	computer	programming	using	a	procedural	high-level	
language.	May	not	be	held	with	COMP	1011	or	COMP	1012	or	COMP	1013.	Prerequisite:	
any	grade	12	or	40S	Mathematics,	or	equivalent.	

General Course Description

This	course	is	an	introduction	to	implementing	simple	algorithms	by	writing	computer	
programs.	The	course	does	not	require	previous	programming	experience.	However,	many	
students	find	that	if	they	have	never	written	any	computer	programs	or	have	never	been	
formally	introduced	to	algorithms	before,	the	pace	can	be	challenging.	If	you	would	like	to	
learn	more	about	the	subject	of	Computer	Science,	while	also	picking	up	important	
programming	fundamentals,	you	may	want	to	consider	taking	COMP	1500	before	this	
course.	

Detailed Prerequisites

Before	entering	this	course,	a	student	should	be	able	to:	

• Evaluate	arithmetic	expressions,	applying	the	rules	of	order	of	operation	to	basic	
arithmetic	operators	(+,	−,	×,	÷)	and	parentheses.	

• Use	common	mathematical	functions	such	as	absolute	value,	square	root,	power	
functions,	and	trigonometric	functions	(e.g.,	to	calculate	angles).	

• Download,	install,	and	use	new	unfamiliar	software	on	a	desktop	or	laptop	
computer.	

Course Goals

By	the	end	of	this	course	students	will:	

• Have	a	robust	mental	model	for	how	the	computer	executes	programming	
instructions,	and	makes	execution	flow	decisions,	by	accessing	information	from	
memory,	performing	calculations,	and	storing	results	in	memory.	

• Write	and	run	moderately	complex	programs	using	a	procedural	programming	
language.	

• Devise	solutions	to	simple	problems	and	implement	them	as	computer	programs.		
• Read	and	evaluate	written	programs.	
• Describe	basic	programming	concepts	and	structures	in	plain	English.	

• Represent	ideas	and	information	in	a	way	that	computers	can	understand	and	act	
on.	

• Analyze	and	implement	simple	common	algorithms	for	tasks	such	as	searching.	

Learning Outcomes

The Mechanics of Programming

Students	should	be	able	to:	

1. Write	and	edit	code	in	a	text	editor	or	simple	IDE.	
2. Compile	and	run	their	programs,	providing	interactive	input	and	producing	output.	
3. Explain	the	conceptual	differences	between	human-readable	source	code	and	object	

code/executables	and	the	role	of	the	compiler	in	translating	from	the	former	into	
the	latter.	

4. Find	and	correct	errors	that	occur	at	compile	time.	
5. Determine	the	source	of	run-time	errors	using	simple	debugging	techniques	such	as	

“trace”	output	statements.	
6. Describe	the	step-by-step	execution	of	a	simple	program	without	the	use	of	a	

computer.	
7. Apply	programming	standards,	such	as	naming,	commenting,	and	named	constants,	

to	produce	human-readable	and	modifiable	programs.	

Data and Representation

Students	should	be	able	to:	

1. Identify	the	data	types	of	literal	values.	
2. Declare,	initialize,	and	assign	variables	of	primitive,	string,	and	simple	collection	

(array)	types.	
3. Apply	operators	and	parentheses	to	build	expressions	using	variables	and	literal	

values.	
4. Determine	the	order	of	operations	and	the	type	of	the	result	of	an	expression.	
5. Use	casting	to	change	the	type	of	a	value.	
6. Explain	the	consequences	of	numbers	having	limited	ranges	or	precision	when	

being	represented	in	binary	by	a	computer.	
7. Describe	the	scope	of	variables	and	the	uses	of	variables	of	different	scope.	
8. Identify	the	difference	between	references	and	objects	for	built-in	types	such	as	

Strings	and	arrays.	

Mathematical Operations

Students	should	be	able	to:	

1. Write	and	evaluate	arithmetic	expressions	(+,	−,	×,	÷,	mod)	that	include	both	literal	
values	and	variables.	

2. Apply	the	modulo	operator	in	common	operations	such	as	even/odd	or	“clock”	
math.	

3. Use	the	compound	assignment	operators	(like	+=	or	--)	to	simplify	common	
assignment	statements.	

4. Use	language	libraries	for	evaluating	common	math	functions.	

Boolean Operations

Students	should	be	able	to:	

1. Use	relational	operators	on	primitive	types	to	produce	Boolean	results.	
2. Evaluate	Boolean	expressions	with	logical	operators	(e.g.,	and,	or,	not).	
3. Recognize	the	correspondence	between	Boolean	conditions	and	Boolean	variables.	

String Processing

Students	should	be	able	to:	

1. Declare	and	use	string	variables	in	a	program.	
2. Access	characters	in	a	string	by	index	and	build	strings	character-by-character.	
3. Perform	operations	on	individual	characters	such	as	case	conversion.	
4. Perform	simple	operations	on	strings	such	as	concatenation.	
5. Convert	between	numeric	and	string	types.	
6. Compare	strings	for	equality.	

Conditional Statements (if-else)

Students	should	be	able	to:	

1. Write	code	that	uses	if	and	if-else	constructions	for	decision	making.	
2. Write	code	that	uses	nested	if	statements	and	if-else-if	chains	for	making	more	

complex	decisions.		

Loops

Students	should	be	able	to:	

1. Write	code	that	uses	deterministic	for	loops,	and	non-deterministic	loops	with	
while.	

2. Convert	between	the	two	types	of	loops,	while	recognizing	which	is	more	
appropriate	for	a	given	context.	

3. Write	code	that	uses	nested	loops,	and	other	nested	control	structures.	

Methods or Functions

Students	should	be	able	to:	

1. Subdivide	complex	problems	into	subroutines.	
2. Implement	subroutines	with	parameters	and	return	values.	
3. Identify	the	scope	of	local	variables.	

Arrays

Students	should	be	able	to:	

1. Determine	when	an	array	is	an	appropriate	solution	to	a	problem.	
2. Declare	and	use	one-dimensional	arrays	of	primitive	and	string	types.	
3. Implement	parallel	arrays	to	store	compound	data	types.	
4. Implement	partially	filled	arrays	for	data	sets	of	an	unpredictable	size.	
5. Pass	arrays	to	and	return	arrays	from	subroutines.	
6. Explain	the	difference	between	a	reference	to	an	array	and	an	array	object.	
7. Describe	how	arrays	are	passed	to	subroutines	as	variable	parameters.	

Algorithms

Students	should	be	able	to:	

1. Implement	simple	algorithms	in	a	high-level	programming	language.	
2. Devise	algorithms	to	solve	simple	problems,	such	as	array	comparison	or	finding	a	

minimum	value.	
3. Describe	the	linear	and	binary	search	algorithms,	recognizing	where	each	is	

appropriate.	
4. Implement	the	linear	search	algorithm.	

	

