
COMP 2080 – Analysis of Algorithms 

Course Description 

Calendar entry 

Methods	of	analyzing	the	time	and	space	requirements	of	algorithms.	Average	case	and	
worst-case	analysis.	Models	of	computation.	Prerequisites:	MATH	1240,	MATH	1241	or	
COMP	2130;	and	one	of	COMP	2140,	or	the	former	COMP	2061.	STAT	1000	or	STAT	1001	
or	STAT	1150	is	strongly	recommended.	

General Course Description 

This	course	introduces	common	algorithmic	techniques	used	in	the	design	of	algorithms	
that	solve	a	variety	of	problems,	as	well	as	techniques	for	analyzing	the	efficiency	of	
algorithms	in	terms	of	their	costs,	such	as	running	time	and	memory	usage.	

The	material	covered	here	provides	the	foundation	upon	which	Computer	Science	depends.	
Regardless	of	the	third-	or	fourth-year	course,	the	design	and	analysis	of	algorithms	is	a	
part	of	everything	we	do.	

Detailed Prerequisites 

Before	entering	this	course,	a	student	should	be	able	to:	

• Design	and	implement	iterative	and	recursive	algorithms.	
• Design	and	implement	standard	algorithms	that	manipulate	arrays,	linked	lists,	and	

binary	trees.	
• Implement	abstract	data	types	such	as	stacks,	queues,	dictionaries,	and	priority	

queues	using	data	structures	such	as	arrays,	linked	lists,	and/or	binary	trees.	
• Implement	common	iterative	and	recursive	sorting	algorithms.	
• Apply	common	techniques	in	discrete	mathematics,	including	logical	equivalence,	

logical	implication,	quantifiers,	evaluating	finite	summations,	proofs,	mathematical	
induction,	introductory	set	theory,	basic	counting	of	permutations	and	
combinations,	introductory	graph	theory.	

Course Goals 

By	the	end	of	this	course	students	will:	

• Express	the	worst-case	cost	of	iterative	algorithms	as	a	function	of	input	size.	
• Express	the	worst-case	cost	of	a	recursive	algorithm	using	a	recurrence	relation.	
• Solve	certain	types	of	recurrence	relations,	simplify	the	solution	using	asymptotic	

notation,	and	prove	correctness	using	a	proof	by	induction.		



• Formally	show	whether	a	function	f	is	Big	Oh,	Theta,	Omega,	little	oh,	or	little	omega	
of	a	function	g.	

• Apply	divide-and-conquer,	greedy,	randomized	(including	Monte	Carlo	and	Las	
Vegas	algorithms),	and	dynamic	programming	algorithmic	design	techniques.	

• Analyze	the	worst-case	running	time	of	typical	divide-and-conquer,	greedy,	
randomized,	and	dynamic	programming	algorithms.	

• Prove	whether	common	properties	of	greedy	algorithms	and	dynamic	programming	
hold.	

Learning Outcomes 

Algorithm Analysis 

Students	should	be	able	to:	

1. Compare	the	relative	worst-case costs	(e.g.,	worst-case running	times)	of	two	
algorithms	using	more	than	a	simple	comparison	of	execution	times	on	sample	
input.		

2. Express	the	worst-case cost	of	a	simple	iterative	algorithm	as	a	function	of	its	input	
size	(under	simplified	assumptions	for	a	unit	of	computation	time,	without	formally	
defining	a	model	of	computation).		

3. Explain	the	difference	between	best-case,	worst-case,	and	average-case	costs	for	a	
deterministic	algorithm.	

4. Explain	the	relative	asymptotic	rates	of	growth	of	common	functions:	constant,	
logarithmic,	linear,	quadratic,	cubic,	exponential,	etc.		

5. Explain	why	the	largest-order	term	is	responsible	for	the	asymptotic	growth,	not	
constants	nor	lower-order	terms.		

6. Simplify	an	expression	using	asymptotic	notation	to	identify	the	largest-order	term.	
7. Formally	define	Big	Oh,	Theta,	Omega,	little	oh,	and	little	omega	notation.		
8. For	two	polynomial	or	logarithmic	functions	f	and	g,	formally	show	whether	

function	f	is	Big	Oh,	Theta,	Omega,	little	oh,	or	little	omega	of	function	g.	
9. Appropriately	use	limits	to	show	asymptotic	relationships	between	two	functions.	

Recurrence Relations 

Students	should	be	able	to:	

1. Express	the	worst-case cost	of	a	recursive	algorithm	using	a	recurrence	relation.		
2. Differentiate	between	the	recursive	expression	for	a	recurrence	relation	and	its	

closed-form	expression.		
3. Solve	certain	types	of	recurrence	relations	using	the	substitution	method.	
4. Simplify	a	recurrence	relation’s	closed-form	solution	using	asymptotic	notation.	
5. Prove	the	correctness	of	a	recurrence	relation’s	closed-form	expression	using	a	

proof	by	induction.	



6. Apply	the	Master	Theorem	to	solve	a	recurrence	relation.	

Divide-and-Conquer Algorithms 

Students	should	be	able	to:	

1. Explain	the	structure	of	divide-and-conquer	algorithms.	
2. Apply	divide-and-conquer	as	a	technique	in	algorithm	design.	
3. Analyze	the	worst-case	running	time	of	typical	divide-and-conquer	algorithms	using	

recurrence	relations.	

Greedy Algorithms 

Students	should	be	able	to:	

1. Explain	the	structure	of	greedy	algorithms,	including	greedy	choice	and	growing	a	
solution	incrementally.		

2. Apply	greedy	choice	as	a	technique	in	algorithm	design.	
3. Analyze	the	worst-case running	time	of	typical	greedy	algorithms.		
4. Prove	whether	the	two	properties	of	greedy	algorithms	hold:	the	optimal	

substructure	property	and	the	greedy-choice	property.	

Dynamic Programming Algorithms 

Students	should	be	able	to:	

1. Explain	the	structure	of	dynamic	programming	algorithms.	
2. Apply	dynamic	programming	as	a	technique	in	algorithm	design.	
3. Analyze	the	worst-case running	time	of	typical	dynamic	programming	algorithms.		
4. Prove	whether	the	two	properties	of	dynamic	programming	algorithms	hold:	the	

optimal	substructure	property	and	the	overlapping	subproblems	property.		
5. Differentiate	between	memoization	and	tabulation.		
6. Implement	a	dynamic	programming	algorithm	that	computes	both	the	size	of	a	

solution	and	returns	the	solution.			

Randomized Algorithms 

Students	should	be	able	to:	

1. Explain	the	structure	of	randomized	algorithms.	
2. Explain	the	differences	between	Las	Vegas	and	Monte	Carlo	randomized	algorithms.		
3. Apply	randomization	as	a	technique	in	algorithm	design.	
4. Analyze	the	expected	running	time	of	typical	randomized	algorithms.	
5. Differentiate	between	expected	running	time	and	worst-case	time.	
6. Analyze	the	probability	that	a	randomized	algorithm	returns	a	correct	solution.	


