
COMP 2160 - Programming Practices 

Course Description 

Calendar entry 

(Lab	Required)	Introduction	to	issues	involved	in	real-world	computing.	Topics	will	
include	memory	management,	debugging,	compilation,	performance,	and	good	
programming	practices.	Prerequisite:	COMP	1020	(C+)	or	COMP	1021	(C+).	

General Course Description 

By	this	point	you	know	how	to	code	(pick	one	or	more	of	Python,	Processing,	Java),	but	you	
probably	don’t	know	how	to	code	well.	

In	this	course	we’re	going	to	be	looking	at	tools	and	methods	that	you	can	use	to	improve	
your	coding	skills,	regardless	of	the	language	that	you’re	writing	in.	We’re	going	to	be	using	
C	and	Unix.	This	is	not	a	C/Unix	course.	It	is	a	course	focusing	on	good	programming	
practices	that	form	the	foundation	you	need	to	become	a	successful	software	developer.	

Detailed Prerequisites 

Before	entering	this	course,	a	student	should	be	able	to:	

• Write	code	that	makes	use	of	instantiation,	objects	in	memory,	and	classes.	
• Write	code	that	deals	with	large	sets	of	data	using	files	stored	on	disk.		
• Design	and	implement	iterative	and	recursive	algorithms.	
• Design	and	implement	algorithms	using	arrays	and	basic	linked	lists.	
• Implement	simple	searching	and	sorting	algorithms.	

Course Goals 

By	the	end	of	this	course	students	will:	

• Write	code	using	an	unfamiliar	programming	language	idiomatically.	
• Write	code	that	makes	identifying	and	fixing	problems	easier.	
• Verify	and	validate	that	code	meets	a	set	of	well-defined	expectations.	
• Modularize	code	via	well-defined	functional	units.	
• Describe	how	memory	is	used	and	safely	managed	within	code	they	write.	
• Identify	systemic	performance	issues	and	provide	mitigating	solutions.	



Learning Outcomes 

Design by Contract 

Students	should	be	able	to:	

1. Define	the	interface	to	an	Abstract	Data	Type	(ADT).	
2. Define	the	implementation	of	an	ADT	using	a	private	data	structure.	
3. Define	the	pre-	and	post-conditions	for	a	routine.	
4. Define	the	invariants	that	encapsulate	the	valid	states	of	an	ADT.	
5. Use	preconditions,	postconditions,	and	invariants	to	validate	the	run-time	behaviour	

of	an	ADT	being	used	in	an	application.	

Testing 

Students	should	be	able	to:	

1. Explain	the	purpose	of	testing	code.	
2. List	classifications	of	test	data	(general,	edge,	leaks).	
3. Create	general	case	test	data	(inputs,	expected	outputs)	for	an	ADT.	
4. Create	edge	case	test	data	(inputs,	expected	outputs)	for	an	ADT.	
5. Manually	test	an	ADT	with	test	data.	
6. Explain	the	purpose	of	automated	testing.	
7. Implement	a	test	harness	that	automates	the	testing	of	an	ADT.	

Programming Practices 

Students	should	be	able	to:		

1. Recognize	potentially	risky	programming	techniques	and	how	they	differ	in	
different	high-level	languages.	

2. Write	“safe”	code	in	a	programming	language	that	makes	it	difficult	to	write	safe	
code.	

3. Apply	“good”	programming	techniques	to	produce	readable	and	modifiable	code	in	
a	programming	language	that	makes	it	easy	to	write	unreadable	code.	

4. Divide	code	from	a	complex	project	into	higher-level	modules,	for	separate	
development	and	compilation.	

5. Describe	the	benefits	of	modularity	and	use	simple	metrics	to	specify	the	degree	of	
modular	independence,	such	as	coupling	and	cohesion.	

6. Given	an	existing	solution,	identify	and	explain	where	the	use	of	appropriate	data	
structures,	algorithms,	and/or	techniques	(such	as	caching	and	lookup	tables)	
provide	better	paths	to	optimization	than	low-level	code.	

Memory and Pointers 

Students	should	be	able	to:	



1. Write,	test,	and	debug	programs	in	a	high-level	language	that	exposes	low-level	
details	of	data	types	and	memory	addresses.	

2. Describe	concepts	of	in-application	memory	management	such	as	first-fit	memory	
allocation,	the	run-time	stack	and	the	heap,	and	garbage	collection.	

3. Implement	a	simple	systems-level	solution	to	one	of	the	in-application	memory	
management	techniques.	

4. Use	function	pointers	to	parameterize	behaviours.	

Tools 

Students	should	be	able	to:	

1. Build	and	execute	programs	from	a	command-line	environment.	
2. Write	code	that	takes	advantage	of	its	environment	through	a)	simple	command-

line	options	to	define	run-time	behaviour,	and	b)	the	redirecting	of	standard	input	
and	output	for	file	I/O.	

3. Use	an	automated	build	tool,	such	as	make	along	with	a	pre-defined	Makefile,	to	
build	a	complex	project.	

4. Define	the	build	of	their	own	project	by	modifying	an	existing	Makefile.	
5. Use	a	source-level	debugger,	such	as	lldb,	to	inspect	program	state	and	step	

through	code	line-by-line	to	determine	the	causes	of	errors	in	a	program.	


