
COMP 2280 – Introduction to Computer Systems 

Course Description 

Calendar entry 

(Lab	Required)	Data	representation	and	manipulation,	machine-level	representation	of	
programs,	assembly	language	programming,	and	basic	computer	architecture.	Not	
available	to	students	who	have	previously	completed	ECE	3610.	Prerequisites:	COMP	2140,	
COMP	2160,	and	one	of	MATH	1240,	MATH	1241	or	COMP	2130.		

General Course Description 

By	this	point	students	have	learnt	how	to	implement	data	structures,	implement	data	
structures	safely,	and	manipulate	memory	through	pointers;	all	in	high-level	languages	
such	as	C	and	Java.	In	doing	so	we’ve	been	treating	the	computer	as	a	black	box	that	
magically	does	what	we	need	it	to	do.	Now	it’s	time	to	show	how	we	make	that	magic	
happen.		

In	this	course	we	teach	how	code	gets	turned	into	something	a	computer	can	use.	We	show	
how	data	structures	are	represented,	how	function	calls	are	implemented,	and	how	
recursion	is	realized.	All	through	the	lens	of	assembly	language.		

We	don’t	stop	there.	We	also	introduce	the	fundamental	components	of	a	computer	and	
how	they	combine	to	provide	us	with	the	modern	computers	we	use	today.	How	an	
instruction	is	managed	and	moves	through	these	components	in	a	structured	way	is	at	the	
core	of	what	we	call	Computer	Science.	

Detailed Prerequisites 

Before	entering	this	course,	a	student	should	be	able	to:	

• Implement	data	structures	such	as	lists,	stacks,	and	binary	trees	in	a	high-level	
language.	

• Manipulate	objects	in	memory	using	pointers.	
• Manipulate	memory	buffers	through	pointers	and	simple	address	arithmetic.	
• Perform	well-defined	and	structured	tests	on	code.	
• Use	a	debugger	to	inspect	program	state	and	step	through	code	line-by-line.	
• Evaluate	Boolean	algebra	expressions.	

Course Goals 

By	the	end	of	this	course	students	will:	



• See	how	the	code	they	write	gets	interpreted	and	executed	by	a	computer.	
• Understand	what	the	compiler	does	to	ensure	that	they	can	implement	data	

structures	and	manipulate	them	using	techniques	such	as	recursion.	
• Experience	the	need	for	an	operating	system	if	they	want	to	provide	anything	

beyond	manually	loading	and	running	one	application	at	a	time.	
• See	how	a	simple	set	of	circuits	leads	to	the	creation	of	Memory,	the	Central	

Processing	Unit,	and	everything	in	between.	
• Be	introduced	to	the	notion	of	a	state	machine	through	the	controlled	execution	of	

instructions.	

Learning Outcomes 

Data Representation and Boolean Algebra 

Students	should	be	able	to:	

1. Provide	the	binary	representation	of	2’s	complement	integers	and	fixed-	and	
floating-point	reals.	

2. Interpret	binary	representations	of	values	to	provide	the	decimal/human-readable	
equivalent.	

3. Perform	standard	mathematical	operations	(+,	−,	×,	÷)	at	the	binary	level.	
4. Perform	Boolean	operations	(AND,	OR,	NOT,	XOR)	and	standard	manipulations	

(such	as	DeMorgan’s	Law)	on/between	binary	values.	
5. Use	logical	operations	to	mask	a	binary	value’s	individual	bits	to	0	or	1	and	compare	

bits	between	binary	values.	

Introduction to Circuits 

Students	should	be	able	to:	

1. Draw	and	explain	combinational	circuits	that	implement	Multiplexers,	Decoders,	
and	Adders.	

2. Draw	and	explain	sequential	circuits,	through	timing	diagrams,	that	implement	a	
flip-flop.	

3. Combine	flip-flops	to	implement	a	register.	
4. Use	multiplexers,	decoders,	and	flip-flops	to	implement	a	memory	chip	and	explain	

how	words	are	stored	and	read.	
5. Combine	memory	chips	to	build/organize	a	memory	with	standard	size	words	(e.g.,	

32-bits).	
6. Show	how	a	memory	address,	a.k.a.	the	contents	of	a	pointer,	is	interpreted	to	

access	a	word	given	a	particular	organization	of	memory	chips.	

Machine Level Program Representation 

Students	should	be	able	to:	



1. Convert	high-level	code	patterns	and	control	structures	into	assembly	language.	
2. Represent	and	manipulate	data	structures	such	as	arrays,	linked	lists,	and	binary	

trees	using	assembly	language.	
3. Use	a	run-time	stack	to	pass	arguments,	allocate	local	variables,	and	return	results	

in	assembly	language.	
4. Implement	a	run-time	stack,	in	assembly	language,	that	fully	supports	all	function	

call	behaviour	required	by	a	high-level	language	such	as	C	or	Java.	
5. Manually	perform	a	two-pass	scan	of	assembly	language	instructions	to	create	a	

symbol	table,	generate	machine	code,	and	link	the	code	so	that	it	is	ready	to	be	
loaded	into	memory.	

Systems Programming 

Students	should	be	able	to:	

1. Differentiate	between	user	code	and	system	code	by	explaining	the	flow	of	control	
from	user	mode	to	system	mode	and	back	again.	

2. Differentiate	between	polling	and	interrupt	driven	input/output	(I/O).	
3. Update	the	system’s	interrupt	vector	table	and	activate/deactivate	an	interrupt	

service	routine	(ISR).	
4. Implement	an	ISR	that	accepts	and	processes	basic	input.	
5. Identify	inappropriate	coding	within	an	ISR	and	explain	why	system/device	driver	

implementations	need	to	avoid	such	coding	pitfalls.	

Computer Organization 

Students	should	be	able	to:	

1. Identify	the	registers,	data	paths,	control	points	and	logical	units	that	make	up	a	
Central	Processing	Unit	(CPU).	

2. Explain	the	CPU<->Memory	interface	and	how	data	is	transferred	to/from	memory.	
3. Explain	the	Fetch-Decode-Execute-Store	instruction	lifecycle	and	how	it	captures	all	

possible	CPU	functionality.		
4. Explain	the	functionality	of	the	Control	Unit	in	terms	of	the	timed	activation	of	

control	points	to	execute	machine	instructions.	
5. Provide	micro-operation	sequences	to	perform	read	from	memory,	write	to	

memory,	register	transfer,	and	arithmetic/logical	operations.	
6. Work	with	the	Control	Unit’s	state	machine	to	identify	the	sequence	of	steps	needed	

to	complete	a	machine	instruction.	
7. Convert	a	machine	instruction	into	micro-operation	sequences	that	correctly	

manipulate	control	points	to	perform	the	steps	required	by	the	machine	instruction.	
	


