
COMP 3350 – Software Engineering 1 

Course Description 

Calendar entry 

Introduction	to	software	engineering.	Software	life	cycle	models,	system	and	software	
requirements	analysis,	specifications,	software	design,	testing	and	maintenance,	software	
quality.	Prerequisites:	COMP	2150	or	ECE	3740.		

General Course Description 

Earlier	courses	in	the	program	focus	mostly	on	individual	students	writing	small,	isolated	
programs	for	assignments.	This	course	introduces	software	development	as	an	activity	for	
a	team	of	developers	building	a	substantial	project	through	the	entire	term.	Each	team	
builds	a	complete	product	that	solves	a	real-world	problem.	

To	accomplish	this	goal,	we	learn	important	techniques	of	software	design,	development	
strategies,	and	just	enough	project	management	skills	at	each	stage	to	build	and	refine	the	
final	product.	

Detailed Prerequisites 

Before	entering	this	course,	a	student	should	be	able	to:	

• Design,	implement,	and	build	software	requiring	multiple	modules	with	well-
defined	interfaces.	

• Make	use	of	object-oriented	concepts	like	abstract	classes,	polymorphism,	
encapsulation	and	overriding.	

• Collect	objects	into	data	structures.	
• Recognize	the	benefits,	in	terms	of	code	readability	and	maintainability,	of	

compartmentalizing	code	into	different	objects	and	hierarchies	of	classes.	
• Write	code	that	makes	identifying	and	fixing	problems	easier.	
• Write	thorough	unit	tests	for	isolated	code	components.	

Additionally,	there	is	some	expectation	that	students	should	demonstrate	programming	
maturity	and	be	able	to	contribute	to	their	team	by	offering	at	least	one	of	the	following	
skills:	

• Designing,	prototyping,	and	evaluating	a	user	interface.	
• Designing	and	implementing	a	relational	database	system.	
• Writing	effectively	in	the	context	of	the	computing	profession.	

	



These	skills,	or	equivalently	advanced	skills,	are	typically	demonstrated	by	having	
completed	at	least	two	other	3000	level	Computer	Science	courses	before	registering	in	
Software	Engineering	1.	

Course Goals 

By	the	end	of	this	course	students	will:	

• Compare	agile	and	rigorous	software	development.	
• Integrate	testing	with	implementation	to	ensure	thorough	test	coverage.	
• Develop	software	to	evolving	requirements.	
• Refine	software	as	it	being	developed.	
• Maintain	an	existing	software	system.	
• Develop	code	in	a	team	and	share	code	safely	amongst	the	members.	
• Use	an	agile	approach	to	facilitate	incremental	development.	
• As	part	of	a	team,	design	and	build	a	complete	software	product	to	solve	a	real-

world	problem.	

Learning Outcomes 

Models of Software Development 

Students	should	be	able	to:	

1. Identify	the	stages	of	the	Software	Development	Life	Cycle.	
2. Describe	how	the	SDLC	stages	can	be	incorporated	into	a	software	development	

process.	
3. Identify	the	characteristics	of	“lightweight”	and	“heavyweight”	processes.	
4. Identify	the	priorities	of	an	agile	software	development	process.	
5. Apply	a	specific	agile	process	to	develop	a	product	as	a	team	over	the	course	of	a	

term.	

Process 

Students	should	be	able	to:	

1. Demonstrate	analysis	of	a	problem	by	communicating	a	vision	that	describes	its	
solution.	

2. Apply	an	iterative	development	strategy	to	build	and	refine	a	product.	
3. Use	conversational	techniques	to	produce	non-technical	user	stories	that	motivate	

software	features.	
4. Estimate	and	prioritize	user	stories	to	generate	an	appropriate	set	of	developer	

tasks	for	each	iteration.	



Development Techniques and Practices 

Students	should	be	able	to:	

1. Work	on	a	shared	code	repository	as	a	team	using	a	version	control	system.	
2. Identify	and	use	basic	tools	of	a	version	control	system,	such	as	branching	and	

conflict	resolution.	
3. Use	an	IDE	to	manage	the	build	and	dependencies	of	a	complex	software	project.	
4. Describe	technical	debt	and	identify	strategies	for	avoiding	it.	
5. Use	practices	such	as	code	review,	collective	ownership,	and	pair	programming	to	

facilitate	development	in	a	team.	
6. Continually	refactor	a	complex	software	project	to	maintain	code	quality.	
7. Identify	and	apply	strategies	for	modifying	legacy	code.	

Testing 

Students	should	be	able	to:	

1. Identify	the	reasons	for	and	general	strategies	of	software	testing.	
2. Write	a	thorough	and	well-organized	set	of	unit	tests	with	complete	coverage	of	a	

complex	software	system.	
3. Apply	strategies	such	as	TDD	to	ensure	good	test	coverage	and	quality.	
4. Use	test	doubles	such	as	stubs	and	mocks	to	replace	dependencies	for	testing.	
5. Implement	integration	tests	to	verify	the	seams	between	system	components.	
6. Define	and	implement	higher	level	tests	such	as	end-to-end	and	acceptance	tests.	

Software Design 

Students	should	be	able	to:	

1. Measure	software	design	quality	using	metrics	such	as	coupling	and	cohesion.	
2. Apply	design	principles	such	as	DRY,	Separation	of	Concerns,	Principle	of	Least	

Knowledge,	and	SOLID	Principles	to	produce	good	design	solutions.	
3. Apply	dependency	injection	to	replace	services	decoupled	from	clients.	
4. Identify	common	design	smells	and	anti-patterns	that	produce	poor	code.	
5. Implement	cross-cutting	concerns	with	minimal	dependencies,	with	a	particular	

emphasis	on	error-handling	strategies.	
6. Describe	the	drawbacks	of	inheritance,	and	how	to	replace	it	with	composition.	
7. Identify	and	apply	design	patterns	to	solve	common	software	design	problems.	
8. Compare	and	use	basic	architectural	design	patterns	such	as	layered	and	MVC.	

 


