
COMP 3430 – Operating Systems

Course Description

Calendar entry

(Lab	Required)	Operating	systems,	their	design,	implementation,	and	usage.	Prerequisites:	
one	of	COMP	2140	or	COMP	2061;	and	COMP	2280	or	ECE	3610.	COMP	2160	is	
recommended.	

General Course Description

This	course	builds	on	the	simple	execution	models	used	in	second	year	through	the	
introduction	of	the	system	software	needed	to	manage	multiple	applications	running	on	a	
single	computer	at	the	same	time.		

In	this	course	we	focus	on	the	application	of	data	structures	and	algorithms	to	the	problem	
of	managing	all	the	resources	introduced	in	second	year:	CPUs,	I/O	devices,	and	memory.	
Clever	management	of	resources	also	gives	us	the	opportunity	to	introduce	and	make	use	
of	new	programming	models	that	allow	us	to	write	code	that	works	on	multiple	problems	
at	the	time	and	code	that	interacts	with	other	running	applications.	In	fact,	we’ll	introduce	
the	programming	models	as	motivation	for	learning	how	an	operating	system	does	what	it	
does.	

Detailed Prerequisites

Before	entering	this	course,	a	student	should	be	able	to:	

• Implement	and	manipulate	data	structures	such	as	stacks,	queues,	and	trees.	
• Design,	implement,	and	build	complex	applications	requiring	multiple	modules	with	

well-defined	interfaces.	
• Perform	well-defined	and	structured	tests	on	code.	
• Use	a	variety	of	standard	development	tools	such	as	those	that	automate	builds	or	

allow	for	the	inspection	of	active	program	state.	
• Write	code	that	directly	manipulates	memory	through	pointers	and	address	

arithmetic.	
• Show	how	a	memory	address	is	interpreted	to	access	a	word	of	memory	given	a	

particular	memory	organization.	
• Differentiate	between	user	and	system	code	and	implement	a	basic	interrupt	service	

routine.	
	

Course Goals

By	the	end	of	this	course	students	will:	

• See	why	operating	systems	have	grown	in	complexity	to	become	one	of	the	most	
important	pieces	of	software	in	the	world	today.	

• Analyze	the	algorithm	and	data	structure	choices	made	to	implement	resource	
management	in	the	form	of	CPU	scheduling,	memory	partitioning/virtualization,	
and	the	file	system	abstraction.	

• Experience	the	design	and	implementation	of	an	operating	system	as	a	case	study	in	
the	design,	development,	and	evolution	of	a	large	and	complex	software	
development	project.	

• Learn	how	to	implement	software	that	makes	use	of	core	operating	system	
functionality	through	concurrent	shared	memory	and	message	passing	
programming	models.	

• Gain	a	deeper	understanding	of	the	separation	between	system	and	user	code.		
• Gain	a	better	understanding	of	what	an	operating	system	provides	and	how	best	to	

exploit	that	functionality	in	the	code	they	write.	

Learning Outcomes

Processes and Threads

Students	should	be	able	to:	

1. Compare	and	contrast	processes,	threads,	and	applications.	
2. Describe	the	lifecycle	of	a	process.	
3. Describe	the	lifecycle	of	the	Unix	operating	system	through	the	lens	of	processes.	
4. Describe	the	operating	system	data	structures	(et	al)	needed	to	manage	a	process	

and	those	needed	to	manage	a	thread.	
5. Write	code	that	uses	system	calls	to	create	and	manage	processes	and	threads.	

Synchronization

Students	should	be	able	to:	

1. Identify	the	critical	section(s)	requiring	mutually	exclusive	access	in	a	piece	of	code	
that	will	be	run	concurrently	using	threads	or	processes.	

2. Identify	correct	and	incorrect	implementations	that	attempt	to	protect	a	critical	
section.	

3. Identify	code	protecting	a	critical	section	that	would	result	in	deadlock	and	propose	
solutions	that	avoid	and/or	prevent	said	deadlock.	

4. Write	code	that	uses	pthread	locks	and	condition	variables	to	implement	a	
semaphore.	

5. Protect	a	critical	section	using	semaphores.	

6. Use	atomic	hardware	instructions	to	implement	a	lock.	

Inter- process/thread Communication

Students	should	be	able	to:	

1. Write	code	where	threads	communicate	and	coordinate	activity	through	a	shared	
memory	buffer.	

2. Write	code	where	processes	communicate	through	message	passing	via	signals,	
pipes,	and	FIFOs.	

3. Describe	how	the	operating	system	supports	and	implements	shared	memory,	
signals,	pipes,	and	FIFOs.	

4. Compare	and	contrast	the	shared	memory	and	message	passing	programming	
models	and	their	relationship	as	seen	through	the	lens	of	synchronization.	

CPU Scheduling

Students	should	be	able	to:	

1. Compare	and	contrast	preemptive	and	non-preemptive	(cooperative)	multitasking.	
2. Compare	and	contrast	different	scheduling	policies.	
3. Evaluate	the	performance	of	scheduling	policies.	
4. Describe	a	scheduling	algorithm	used	by	a	modern	operating	system.	
5. Write	code	that	implements	and	analyzes	a	scheduling	policy.	

Memory Management

Students	should	be	able	to:	

1. Discuss	the	benefits	of	partitioning	memory.	
2. Explain	the	operating	system	data	structures	and	algorithms	used	to	manage	a	

partitioning	strategy	such	as	paging.	
3. Explain	how	a	process’	entire	address	space	can	be	provided/supported	via	the	

concept	of	virtual	memory.	
4. Translate	virtual	addresses	into	physical	addresses.	
5. Describe	how	the	operating	system	works	with	the	underlying	hardware	to	manage	

paging	and	virtual	memory.	
6. Compare	and	contrast	free	space	management	policies.	

File Systems

Students	should	be	able	to:	

1. Describe	the	data	structures	used	to	represent	files	and	directories	as	seen	in	Unix.	
2. Show	how	common	file	operations	are	performed	in	terms	of	manipulating	a	file	

system’s	data	structures.	
3. Explain	how	files	are	managed	as	part	of	a	process’	active	state.	

4. Compare	and	contrast	traditional	file	systems	with	modern	approaches	such	as	log	
structured	and	journaling	file	systems.	

