
COMP 1012 - Computer Programming for Scientists and
Engineers

Course Description

Calendar entry

(Lab	Required)	An	introduction	to	computer	programming	suitable	for	solving	problems	in	
science	and	engineering.	Students	will	implement	algorithms	for	numerical	processing,	
statistical	analysis	and	matrix	operations.	May	not	be	held	with	COMP	1010,	COMP	1011	or	
COMP	1013.	Prerequisite:	Mathematics	40S,	or	equivalent.	Co-requisite:	MATH	1230	or	
MATH	1500	or	MATH	1501	(or	equivalent).	

General Course Description

This	course	is	an	introduction	to	implementing	simple	algorithms	by	writing	computer	
programs.	The	course	does	not	require	previous	programming	experience.	However,	many	
students	find	that	if	they	have	never	written	any	computer	programs	or	have	never	been	
formally	introduced	to	algorithms	before,	the	pace	can	be	challenging.	If	you	would	like	to	
learn	more	about	the	subject	of	Computer	Science,	while	also	picking	up	important	
programming	fundamentals,	you	may	want	to	consider	taking	COMP	1500	before	this	
course.	

In	this	course	students	will	learn	to	define	and	use	variables,	functions,	conditional	
expressions,	iteration	via	loops,	read	data	from	files	stored	on	a	computer,	and	create	
simple	data	structures	such	as	arrays,	lists,	sets,	and	dictionaries.	Recursion	and	an	
introduction	to	object-oriented	programming	are	also	discussed.	Examples	and	problem	
sets	will	be	drawn	from	all	the	Sciences	(from	Physics	to	Statistics	and	everything	in-
between)	including	those	of	particular	interest	to	Engineers.	

Detailed Prerequisites

Before	entering	this	course,	a	student	should	be	able	to:	

• Evaluate	arithmetic	expressions,	applying	the	rules	of	order	of	operation	to	basic	
arithmetic	operators	(+,	−,	×,	÷)	and	parentheses.	

• Use	common	mathematical	functions	such	as	absolute	value,	square	root,	power	
functions,	and	trigonometric	functions	(e.g.,	to	calculate	angles).	

• Given	a	formula	for	the	terms	of	a	sequence,	calculate	the	sum	of	n	terms.	
• Calculate	simple	statistics	on	a	dataset	(e.g.	mean,	median,	standard	deviation).	
• Download,	install,	and	use	new	unfamiliar	software	on	a	desktop	or	laptop	

computer.	

Course Goals

By	the	end	of	this	course	students	will:	

• Have	a	robust	mental	model	for	how	the	computer	executes	programming	
instructions,	and	makes	execution	flow	decisions,	by	accessing	information	from	
memory,	performing	calculations,	and	storing	results	in	memory.	

• Write	and	run	moderately	complex	programs	using	a	procedural	programming	
language.	

• Devise	solutions	to	simple	problems	and	implement	them	as	computer	programs.		
• Read	and	evaluate	written	programs.	
• Describe	basic	programming	concepts	and	structures	in	plain	English.	
• Represent	ideas	and	information	in	a	way	that	computers	can	understand	and	act	

on.	
• Implement	and	use	data	structures	to	solve	a	problem,	with	emphasis	on	arrays,	

lists,	sets,	and	dictionaries.	
• Write	software	that	reads	and	processes	data	from	files	stored	on	disk.	

Learning Outcomes

The Mechanics of Programming

Students	should	be	able	to:	

1. Write	and	edit	code	in	a	text	editor	or	simple	IDE.	
2. Run	their	programs,	providing	interactive	input	and	producing	output.	
3. Explain	the	role	of	an	interpreter	in	executing	a	program.	
4. Find	and	correct	errors	that	prevent	a	program	from	running.	
5. Determine	the	source	of	run-time	errors	using	simple	debugging	techniques	such	as	

“trace”	output	statements.	
6. Describe	the	step-by-step	execution	of	a	simple	program	without	the	use	of	a	

computer.	
7. Import	libraries/modules	and	use	functions	and	constants	defined	therein.	
8. Apply	programming	standards,	such	as	naming	conventions,	commenting,	and	code	

formatting,	to	produce	human-readable	and	modifiable	programs.	

Data and Representation

Students	should	be	able	to:	

1. Identify	the	data	types	of	literal	values.	
2. Declare,	initialize,	and	assign	variables	of	primitive	(integer,	floating	point,	boolean),	

string,	sequence	(lists,	tuples,	arrays)	and	collection	(sets,	dictionaries)	types.	

3. Apply	operators	and	parentheses	to	build	expressions	using	variables	and	literal	
values.	

4. Determine	the	order	of	operations	and	the	type	of	the	result	of	an	expression.	
5. Explain	the	consequences	of	numbers	having	limited	precision	when	being	

represented	in	binary	by	a	computer.	
6. Describe	the	scope	of	variables	and	the	uses	of	variables	of	different	scope.	
7. Identify	the	difference	between	references	and	objects.	

Mathematical Operations

Students	should	be	able	to:	

1. Write	and	evaluate	arithmetic	expressions	(+,	−,	×,	÷,	mod)	that	include	both	literal	
values	and	variables.	

2. Apply	the	modulo	operator	in	common	operations	such	as	even/odd	or	“clock”	
math.	

3. Use	the	compound	assignment	operators	(e.g.,	+=)	to	simplify	common	assignment	
statements.	

4. Use	language	libraries	for	evaluating	common	math	functions.	

Boolean Operations

Students	should	be	able	to:	

1. Use	relational	operators	on	primitive	types	to	produce	Boolean	results.	
2. Write	and	evaluate	Boolean	expressions	with	relational	(e.g.,	>,	<,	>=)	and/or	logical	

operators	(e.g.,	and,	or,	not).	
3. Recognize	the	correspondence	between	Boolean	conditions	and	Boolean	variables.	
4. Explain	the	order	of	operations	used	in	evaluating	conditional	expressions.	

Conditional Statements (if-else)

Students	should	be	able	to:	

1. Write	code	that	uses	if	and	if-else	constructions	for	decision	making.	
2. Write	code	that	uses	nested	if	statements	and	if-else-if	chains	for	making	more	

complex	decisions.		

String Processing

Students	should	be	able	to:	

1. Declare	and	use	string	variables	in	a	program.	
2. Access	characters	in	a	string	by	index	and	build	strings	character-by-character	or	by	

slicing.	

3. Perform	simple	operations	on	strings	such	as	concatenation,	and	find	and	replace.	
4. Convert	between	numeric	and	string	types.	
5. Compare	strings	for	equality.	
6. Apply	formatting	to	strings	and	numbers	to	produce	human-readable	output.	

Input

Students	should	be	able	to:	

1. Explain	why	all	input	comes	into	the	system	as	a	string.	
2. Obtain	text	input	from	a	user.	
3. Read	the	contents	of	a	file.	
4. Build	an	appropriate	data	structure	to	represent	data	in	a	file.	
5. Load	data	from	a	file	into	a	data	structure	using	split,	strip,	and	cast	operations.	

Loops

Students	should	be	able	to:	

1. Write	code	that	uses	deterministic	for	loops,	and	non-deterministic	loops	with	
while.	

2. Select	the	appropriate	type	of	loop	to	use	for	a	given	context.	
3. Write	code	that	uses	nested	loops,	and	other	nested	control	structures.	
4. Use	a	loop	to	access	all	or	a	subset	of	elements	in	a	data	sequence.	
5. Use	a	loop	to	read	data	from	file.	

Methods or Functions

Students	should	be	able	to:	

1. Subdivide	complex	problems	into	subroutines.	
2. Implement	subroutines	with	parameters	and	return	values.	
3. Explain	how	the	use	of	functions	affects	variable	scope.	
4. Explain	the	difference	between	passing	as	value	and	passing	as	reference.	

Random Numbers

Students	should	be	able	to:	

1. Explain	why	pseudorandom	numbers	are	used	in	programming	languages.	
2. Use	pseudorandom	numbers	to	create	a	reproducible	experiment.	

Data Sequences and Collections

Students	should	be	able	to:	

1. Explain	the	difference	between	a	sequence	(e.g.	list,	tuple)	and	a	collection	(e.g.	set,	
dictionary).	

2. Insert	data	into	lists,	tuples,	sets,	and	dictionaries.	
3. Access	individual	items	or	iterate	over	all	items	in	a	list,	tuple,	set,	or	dictionary.	
4. Draw	how	collections	of	data	are	stored	in	memory.	
5. Analyze	a	data	set,	and	choose	the	most	appropriate	data	structure	to	store	the	data.	

Arrays

Students	should	be	able	to:	

1. Determine	when	an	array	is	an	appropriate	solution	to	a	problem.	
2. Explain	the	difference	between	a	list	and	an	array.	
3. Declare	and	iterate	through	one-dimensional	and	multi-dimensional	arrays	of	

primitive	types.	
4. Perform	a	computation	on,	or	apply	a	conditional	to,	all	elements	of	an	array.	
5. Calculate	basic	statistics	(sum,	mean,	median,	standard	deviation)	for	data	stored	in	

an	array.	
6. Pass	arrays	to	and	return	arrays	from	subroutines.	
7. Describe	how	arrays	are	passed	to	subroutines	as	variable	parameters.	

Object-Oriented Programming Basics

Students	should	be	able	to:	

1. Write	a	simple	class	that	includes	constructors,	instance	variables,	and	instance	
methods.	

2. Use	instances	of	user-defined	classes	in	other	user-defined	classes	and	within	the	
main	program.	

3. Understand	object	references	and	use	them	appropriately	in	code,	including	use	of	a	
reference	to	the	current	object.	

4. Analyze	a	problem	statement	or	dataset	and	create	an	object	or	objects	to	represent	
the	data.	

Recursion

Students	should	be	able	to:	

1. Create	and	implement	recursive	solutions	to	simple	problems	such	as	simple	
mathematical	calculations	and	list	traversals.	

2. Write	a	recursive	solution	to	a	problem	with	a	helper	function.	
3. Identify	and	explain	the	base	case	and	recursive	step	components	of	a	recursive	

algorithm.	
4. Explain	the	flow	of	control	during	recursive	function	calls,	including	the	role	of	the	

runtime	stack.	

Algorithms

Students	should	be	able	to:	

1. Implement	simple	algorithms	in	a	high-level	programming	language.	
2. Devise	algorithms	to	solve	simple	problems,	such	as	array	comparison	or	finding	a	

minimum	value.	
3. Describe	and	implement	linear	search	and	ordered	insert	algorithms.	

	

