
COMP 1500 – Computing: Ideas and Innovation 

Course Description 

Calendar entry 

An	introduction	to	the	topics	of	Computer	Science	and	problem	solving.	Students	will	learn	
concepts	in	computer	programming.	May	not	be	used	to	fulfill	computer	science	
requirements	in	a	Computer	Science	Honours,	Joint	Honours,	Major,	General	or	Minor	
program.	May	not	be	taken	once	in	a	declared	Computer	Science	Honours,	Joint	Honours,	
Major,	General	or	Minor	program.	May	be	used	as	an	elective	if	taken	prior	to	entry.	

General Course Description 

You	may	not	know	anything	about	computers,	and	that’s	totally	OK.	This	course	will	start	
by	giving	you	a	general	overview	of	some	of	the	fundamental	concepts	of	Computer	
Science,	starting	from	the	bottom	(binary,	and	hardware),	working	up	to	abstractions	and	
problem	solving	(algorithms	and	data	structures),	and	finally,	application	of	fundamental	
concepts	to	a	domain	area	(artificial	intelligence,	bioinformatics,	etc.).	You’ll	also	get	a	
chance	to	do	some	basic	programming	in	this	course	using	a	visual	programming	
environment	called	Snap! 

Detailed Prerequisites 

Before	entering	this	course,	a	student	should	be	able	to:	

• Evaluate	arithmetic	expressions,	applying	the	rules	of	order	of	operation	to	basic	
arithmetic	operators	(+,	−,	×,	÷)	and	parentheses.	

• Use	a	web	browser	and	have	basic	document	editing	skills	(e.g.,	word	processing,	
slide	creation).	

Course Goals 

By	the	end	of	this	course	students	will:	

• Have	a	better	idea	of	the	breadth	of	Computer	Science	(it’s	not	just	programming!).	
• Represent	information	digitally.	
• Build	simple	circuits	for	calculating	values	and	show	how	those	circuits	can	be	

combined	to	perform	more	complicated	calculations.	
• Apply	basic	problem-solving	skills.	
• Write,	use,	and	evaluate	simple	algorithms.	
• Implement	abstractions	as	software.	



Learning Outcomes 

Computer Science 

Students	should	be	able	to:	

1. Explain	what	Computer	Science	is	in	a	written	assignment	by	giving	examples	of	
subdisciplines	in	Computer	Science.	

2. Define	the	term	abstraction.	
3. Explain	why	abstractions	are	necessary	to	solve	complex	problems	with	computers.	
4. Describe	how	a	Turing	machine	behaves.	
5. Define	and	describe	the	von	Neumann	architecture.	

Representing information digitally 

Students	should	be	able	to:	

1. Convert	numbers	between	number	systems	(binary,	decimal,	hexadecimal).	
2. Compute	how	many	bits	are	required	to	store	certain	numbers.	
3. Explain	how	text	is	stored	digitally	(ASCII	vs.	Unicode).	
4. Explain	how	images	are	stored	digitally	(black	and	white	à	grayscale	à	colour).	
5. Predict	how	an	animation	might	be	stored	digitally.	
6. Explain	how	formats	and	encodings	are	important	for	communication.	

How computers function 

Students	should	be	able	to:	

1. Evaluate	Boolean	expressions	with	logical	operators	AND,	OR,	NOT,	and	XOR.	
2. Construct	a	Boolean	expression	that	satisfies	a	truth	table.	
3. Explain	how	XOR	and	AND	can	be	used	to	add	two	single-bit	numbers.	
4. Translate	Boolean	expressions	into	circuits	and	vice	versa.	
5. Build	a	full-adder	circuit	up	to	four	bits.	
6. Determine	the	output	of	a	circuit	given	a	circuit	diagram.	
7. Describe	the	structure	of	a	simple	CPU	architecture	(Arithmetic	Logic	Unit,	Control	

Unit,	memory	hierarchy,	memory	addressing)	

Basic assembly language programming 

Students	should	be	able	to:	

1. Use	a	simple	assembly	language	to	write	programs	that	can	do	the	following.	
a. Perform	multi-step	arithmetic	calculations.	
b. Receive	inputs	and	produce	an	output.	



c. Test	a	condition	and	make	a	decision	based	on	the	result.	
d. Repeat	a	sequence	of	steps	until	some	condition	is	met.	

2. Determine	the	output	of	a	simple	assembly	language	program.	

Problem solving, algorithms, and complexity 

Students	should	be	able	to:	

1. Explain	what	an	algorithm	is.	
2. Divide	a	big	problem	(e.g.,	“How	do	I	sort	these?”)	into	smaller	steps.	
3. Find	information	in	a	list	using	linear	search	and	binary	search.	
4. Sort	information	using	bubble	sort	and	selection	sort.	
5. Rank	searching	and	sorting	algorithms	by	runtime	complexity	(Big	O	notation).	

Implement abstractions as software 

Students	should	be	able	to	use	a	visual	programming	language	to:	

1. Move	a	sprite	around	on	a	screen.	
2. Repeat	blocks	using	loops	(forever,	n	times,	event-based	conditions).	
3. Detect	events	using	conditional	blocks	and	Boolean	expressions.	
4. Store	and	modify	values	in	variables	(numbers).	
5. Use	random	numbers	in	a	program.	
6. Make	custom	blocks	for	code	reuse.	
7. Use	input	to	customize	the	behaviour	of	a	program.	

Disciplines within Computer Science 

Students	taking	this	course	should	be	able	to	accomplish	certain	tasks	within	a	discipline	of	
Computer	Science,	based	on	the	preference	of	the	instructor.	The	following	are	examples	
that	have	been	taught	in	this	course.	They	are	not	meant	to	be	prescriptive	or	required.	

Bioinformatics 

Students	should	be	able	to:	

1. Define	common	terms	used	in	microbiology	to	describe	life	sciences	data	(DNA,	base	
pairs,	codons,	genes,	genomes,	sequencing).	

2. Explain	the	purpose	of	assembly	algorithms.	
3. Compare	and	contrast	reference-based	assembly	to	de	novo	assembly.	
4. Explain	how	sequencing	reads	can	be	represented	in	a	graph.	
5. Define	the	term	de	Bruijn	graph.	
6. Build	a	de	Bruijn	graph	from	a	set	of	sequencing	reads.	
7. Reconstruct	a	genome	from	a	de	Bruijn	graph.	
8. Justify	the	need	for	sequence	alignment.	



9. Align	sequences	using	the	Needleman-Wunsch	algorithm.	

Cryptography 

Students	should	be	able	to:	

1. Define	the	term	cryptography.	
2. Justify	the	need	for	cryptography.	
3. Define	the	terms	“plaintext”,	“cipher”,	“ciphertext”,	“encryption”,	and	“decryption”.	
4. Use	a	shared	key	cipher	(e.g.,	Caesar	Cipher)	to	encrypt	and	decrypt	a	message.	
5. Use	frequency	analysis	to	decrypt	a	simple	ciphertext	without	a	key.	
6. Use	brute	force	to	decrypt	a	simple	ciphertext	without	a	key.	
7. Define	the	term	“public	key	cryptography”.	
8. Explain	the	significance	of	prime	numbers	and	the	factoring	problem	to	RSA	

encryption.	
9. Find	the	prime	factors	of	a	(small!)	composite	number	and	use	the	result	to	decrypt	

a	message	that	was	encrypted	with	RSA.	


