
COMP 3010 – Distributed Computing 

Course Description 

Calendar entry 

An	introduction	to	the	development	of	client	server	and	peer-to-peer	systems	through	web	
applications,	distributed	programming	models,	and	distributed	algorithms.	Prerequisite:	
COMP	2150	or	ECE	3740.	

General Course Description 

Applications	don’t	run	in	isolation	on	a	single	computer.	In	this	course	we	go	from	the	
isolated	applications	written	in	second	year	(and	most	of	third	year)	and	focus	on	how	an	
application	can	interact	with	other	applications	to	solve	interesting	problems.	We’ll	discuss	
how	to	design	applications	such	that	they	can	interact	reliably.	We’ll	also	discuss	how	to	
implement	the	common	client-server	applications	we	use	every	day.	

Distributed	computing	doesn’t	get	interesting	until	we	have	a	group	of	peers	working	to	
solve	a	common	problem.	To	do	that	we	need	to	understand	and	be	able	to	implement	
several	really	interesting/complex	algorithms.	Doing	that	well	is	a	challenge.	A	challenge	
involving	concurrency	and	failures	—	where	a	failure	in	code	you	didn’t	write	has	to	be	
something	that	your	code	handles	cleanly.	It	may	be	a	challenge	but	solving	those	
challenges	is	at	the	foundation	of	some	interesting	Computer	Science.	

Detailed Prerequisites 

Before	entering	this	course,	a	student	should	be	able	to:	

• Implement	and	manipulate	data	structures	such	as	lists,	queues,	and	trees.	
• Design,	implement,	and	build	complex	applications	requiring	multiple	modules	with	

well-defined	interfaces.	
• Perform	well-defined	and	structured	tests	on	code.	
• Use	a	variety	of	standard	development	tools	such	as	those	that	automate	builds	or	

allow	for	the	inspection	of	active	program	state.	
• Use	standard	tools	to	remotely	connect	to	a	computer	and	then	edit/run	code.	

Course Goals 

By	the	end	of	this	course	students	will:	

• See	how	real-world	distributed	applications	are	designed	and	implemented.	
• Build	their	own	client-server	and	peer-to-peer	applications.	
• Experience	messaging	protocols	such	as	HTTP.	



• Design	and	implement	a	messaging	protocol	that	must	correctly	interact	with	code	
written	by	other	students.	

• See	how	real-world	peer-to-peer	applications	that	share	and	store	information	are	
built	using	fundamental	algorithms	that	ensure	the	scalability	and	reliability	needed	
by	applications	that	involve	an	unknown	number	of	peers	from	around	the	world.		

Learning Outcomes 

Design of Distributed Applications 

Students	should	be	able	to:	

1. Explain	how	a	distributed	resource	is	located	using	a	distributed	naming	service.	
2. Identify	potential	failure	modes	in	a	distributed	design	and	propose	solutions	to	

mitigate	each	failure	mode.	
3. Analyze	the	scalability	of	a	distributed	design	and	propose	improvements	that	

enhance	the	scalability	of	the	design.	
4. Propose	and	justify	the	design	of	a	distributed	application.	

Web-based Computing 

Students	should	be	able	to:	

1. Write	server-side	code	that	processes	HTTP	messages	without	the	use	of	an	existing	
library	or	framework.	

2. Implement	server-side	session	management	without	the	use	of	an	existing	library,	
framework,	or	database	management	system.	

3. Write	client-side	code	that	provides	sufficient	testing	of	their	own	server-side	code.	

Distributed Programming 

Students	should	be	able	to:	

1. Write	code	that	uses	stream	sockets	to	implement	a	client-server	application.	
2. Write	code	that	uses	datagram	sockets	to	implement	some	peer-to-peer	application.	
3. Explain	how	the	message	passing	model	provides	synchronization	primitives	(e.g.,	

blocking	versus	non-blocking)	needed	by	concurrently	running	applications	that	
interact.	

4. Identify	synchronization	issues	(e.g.,	deadlock,	live-lock,	and	race	conditions)	that	
arise	in	a	piece	of	code	that	interacts	with	other	instances	of	the	same	code.	

5. Write	error	handling	and	recovery	code	that	mitigates	failure	modes	identified	
through	timeouts	and	corrupt	messages.	

Distributed Algorithms 

Students	should	be	able	to:	



1. Show	that	a	given	algorithm	correctly	or	incorrectly	provides	mutually	exclusive	
access/update	of	a	shared	resource	by	a	group	of	peers.	

2. Show	that	a	given	algorithm	correctly	or	incorrectly	reaches	consensus	among	a	
group	of	peers.	

3. Show	that	a	given	algorithm	correctly	or	incorrectly	elects	a	new	tracker/server	
from	a	group	of	peers.	

4. Show	that	a	given	algorithm	correctly	or	incorrectly	manages	a	ring	of	peers	that	
join	and	leave	the	ring	non-deterministically.	

5. Explain	how	a	group	of	peers	can	manage	a	shared	data	store.	
6. Discuss	the	happens-before	relation	and	its	use	to	define	a	partial	ordering	of	events	

between	a	group	of	interacting	peers.	
7. Use	the	happens-before	relation	to	identify	whether	a	given	algorithm	will	result	in	

message	passing	race	conditions,	live-lock,	and/or	deadlock	and	propose	a	solution	
that	prevents/avoids	the	situation.	


