
COMP 3170 – Analysis of Algorithms and Data Structures	
Course Description 	
Calendar entry 	

Fundamental	algorithms	for	sorting,	searching,	storage	management,	graphs,	databases	
and	computational	geometry.	Correctness	and	Analysis	of	those	Algorithms	using	specific	
data	structures.	An	introduction	to	lower	bounds	and	intractability. Prerequisites:	COMP	
2080	and	COMP	2140.	

General Course Description 	

COMP	3170	is	the	third	course	in	theoretical	computer	science.	After	learning	fundamental	
data	structures	and	techniques	for	algorithm	design	in	COMP	2140	and	COMP	2080,	
students	will	gain	a	deeper	understanding	of	design	and	analysis	of	efficient	algorithms.	
Students	will	learn	new	techniques	for	solving	specific	problems	more	efficiently	and	for	
analyzing	space	and	time	requirements,	including	showing	whether	a	problem	is	unlikely	
to	be	solvable	exactly	by	any	efficient	algorithm,	designing	algorithms	that	provide	
approximate	solutions,	and	analyzing	amortized	and	expected	costs.	

Detailed Prerequisites 	
Before	entering	this	course,	a	student	should	be	able	to:		

• Implement	common	data	structures	and	their	associated	operations,	including	a	
binary	search	tree,	a	heap,	and	a	hash	table	and	analyze	each	operation’s	running	
time.	

• Implement	the	common	abstract	data	types:	stack,	queue,	and	priority	queue,	along	
with	their	associated	operations,	and	analyze	each	operation’s	running	time.	

• Implement	common	sorting	algorithms,	and	analyze	their	running	times,	including	
merge	sort	and	quicksort.	

• Be	familiar	with	topics	in	discrete	mathematics,	including	logical	equivalence,	logical	
implication,	quantifiers,	proofs,	mathematical	induction,	introductory	set	theory,	
introductory	graph	theory.	

• Analyze	the	worst-case	running	times	of	iterative	and	recursive	deterministic	
algorithms.	

• Apply	big	Oh,	Omega,	Theta,	little	oh,	and	little	omega	notation	correctly	in	
algorithm	analysis. 

• Understand	how	to	apply	each	case	of	the	Master	Theorem	to	solve	a	recurrence	
relation	and	explain	when	the	Master	Theorem	is	not	applicable.	 

• Design	a	divide-and-conquer	algorithm	to	solve	a	given	problem.	
• Design	a	greedy	algorithm	to	solve	a	given	problem.	
• Design	a	dynamic	programming	algorithm	to	solve	a	given	problem.	



Course Goals 	
By	the	end	of	this	course	students	will:		

• Implement	a	linear-time	selection	algorithm	(e.g.,	quickSelect).		
• Implement	advanced	data	structures	and	their	associated	operations,	including	a	

balanced	binary	search	tree,	skip	lists,	and	binomial	heaps,	and	analyze	the	worst-
case	and/or	expected	space	and	time	costs	of	each	data	structure	and	operation.		

• Augment	a	data	structure	to	support	additional	operations	efficiently	by	writing	
code	to	extend	a	binary	search	tree	to	support	the	rank	and	select	operations	
efficiently.		

• Analyze	the	amortized	cost	of	a	sequence	of	operations	using	the	aggregate	method,	
the	accounting	method,	or	the	potential	method.		

• Implement	the	disjoint	set	ADT,	along	with	its	associated	operations,	using	a	disjoint	
set	forests	data	structure	and	applying	the	techniques	of	union	by	rank	and	path	
compression.	

• Prove	a	lower	bound	on	the	worst-case	running	time	of	any	algorithm	that	solves	a	
given	problem	by	using	a	decision	tree	argument.	

• Show	that	any	algorithm	that	solves	a	given	problem	requires	at	least	as	much	time	
as	another	given	problem	in	the	worst	case	by	using	a	polynomial-time	reduction.	

• Be	introduced	to	the	concept	of	complexity	classes,	including	the	class	NP,	and	the	
distinction	between	NP-hard	and	NP-complete.		

• Show	that	a	given	problem	is	NP-hard	by	using	a	polynomial-time	reduction.	
• Express	a	bound	on	the	quality	of	the	approximation	factor	guaranteed	by	an	

algorithm	relative	to	an	optimal	solution.		
• Implement	an	approximation	algorithm	for	a	given	problem	and	analyze	its	

approximation	factor	and	its	space	and	time	costs.			

Learning Outcomes 	
Selection	
Students	should	be	able	to:		

1. Implement	the	quickSelect	algorithm.	
2. Analyze	the	expected-time	and	worst-case	time	for	quickSelect.	
3. Explain	the	O(n)	worst-case	time	selection	algorithm	(median	of	medians	

algorithm)	and	analyze	its	worst-case	time.		

Balanced Binary Search Trees (AVL or Red-black trees)	
Students	should	be	able	to:		

1. Understand	the	differences	between	weight-balanced	trees	and	height-balanced	
trees.	Express	the	balancing	factor	of	a	tree	and	determine	whether	a	given	tree	is	
balanced	or	unbalanced.		

2. Derive	an	upper	bound	on	the	height	of	a	balanced	tree	as	a	function	of	the	number	
of	nodes.	



3. Explain	tree	rotations,	when	a	double	rotation	is	necessary,	the	cost	of	a	rotation,	
and	which	rotations	are	necessary	after	insertion	and	deletion	into	a	balanced	
binary	search	tree.		

4. Analyze	the	worst-case	cost	of	insertion	and	deletion	in	a	balanced	binary	search	
tree.		

Augmenting Data Structures  
Students	should	be	able	to:		

1. Explain	when	and	why	a	data	structure	could	be	augmented.		
2. Explain	how	to	augment	a	data	structure	to	support	additional	operations	

efficiently.		
3. Write	code	to	extend	a	binary	search	tree	class	to	support	the	rank	and	select	

operations	efficiently.		
4. Analyze	the	worst-case	time	for	the	rank	and	select	operations	as	a	function	of	the	

tree	height	and	the	number	of	nodes.			

Skip Lists 
Students	should	be	able	to:		

1. Implement	a	skip	list,	including	the	operations	search,	insert,	delete	and	
predecessor.		

2. Explain	how	node	heights	are	assigned	at	random	according	to	a	geometric	
distribution.	

3. Analyze	the	expected	space	and	time	costs	of	skip	lists	and	each	operation.			

Binomial Heaps 
Students	should	be	able	to:		

1. Understand	the	differences	in	the	operations	supported	by	a	mergeable	heap	as	
compared	to	a	traditional	heap.		

2. Implement	a	binomial	heap,	including	the	operations	insert,	extractMax,	and	union.			
3. Analyze	the	worst-case	time	for	these	operations.		

Amortized Analysis 
Students	should	be	able	to:		

1. Explain	the	differences	between	worst-case	time,	expect	time,	and	amortized	time.	
2. Bound	the	worst-case	total	time	for	a	sequence	of	operations	for	specific	examples	

(e.g.,	bit	counter,	resizable	array).		
3. Analyze	the	amortized	per	operation	using	the	aggregate	method,	the	accounting	

method,	or	the	potential	method.		

Disjoint Sets 
Students	should	be	able	to:		

1. Implement	the	disjoint	set	ADT	using	a	disjoint	set	forests	data	structure,	including	
the	operations	makeSet,	find,	and	union.	

2. Explain	the	techniques	of	union	by	rank	and	path	compression.		
3. Understand	the	rate	of	growth	of	the	inverse	Ackermann	function.		



4. Express	the	amortized	cost	per	operation	for	the	disjoint	set	forest	data	structure	
using	union	by	rank	and	path	compression.		

Lower Bounds 
Students	should	be	able	to:		

1. Using	a	decision	tree	argument,	prove	a	lower	bound	on	the	worst-case	running	
time	of	any	algorithm	that	solves	a	given	problem,	e.g.,	comparison-based	sorting.	

2. Explain	how	a	lower	bound	on	the	worst-case	time	for	solving	one	problem	can	
imply	a	lower	bound	on	the	worst-case	time	for	solving	another	problem	by	using	a	
reduction	to	show	that	the	second	problem	is	at	least	as	hard	to	solve	as	the	first	
problem.		

3. Give	a	lower	bound	argument	for	a	given	problem	using	a	reduction.		

Computational Complexity 
Students	should	be	able	to:		

1. Understand	the	concept	of	a	complexity	class.		
2. Explain	the	complexity	classes	P	and	NP.	
3. Explain	what	it	means	for	a	problem	to	be	NP-hard	vs.	NP-complete.	Understand	the	

concept	of	complexity	classes,	including	the	class	NP.		
4. Using	a	polynomial-time	reduction,	show	that	a	given	problem	is	NP-hard.	

Approximation Algorithms 
Students	should	be	able	to:		

1. Explain	when	an	approximation	algorithm	provides	a	good	solution	to	a	problem.		
2. Express	a	bound	on	the	quality	of	the	approximation	factor	guaranteed	by	an	

algorithm	relative	to	an	optimal	solution.		
3. Implement	an	approximation	algorithm	for	a	given	problem	and	analyze	its	

approximation	factor	and	its	space	and	time	costs.			
4. Explain	the	definition	of	a	PTAS.	
5. Explain	the	class	APX-hard.	
6. Using	a	polynomial-time	reduction,	show	that	a	given	problem	is	APX-hard.	

	


