
COMP 3030 – Automata Theory and Formal Languages 
Course Description 	
Calendar entry 	

An	introduction	to	automata	theory,	grammars,	formal	languages	and	their	applications.	
Topics:	finite	automata,	regular	expressions	and	their	properties;	context-free	grammars,	
pushdown	automata	and	properties	of	context-free	languages;	Turing	machines	and	their	
properties.	Prerequisite:	COMP	2080.	

General Course Description 	

COMP	3030	introduces	some	of	the	central	ideas	of	theoretical	computer	science.	The	
course	covers	some	formal	models	of	computation,	including	the	finite	automaton,	the	
pushdown	automaton,	and	the	Turing	machine.	For	each	model,	students	first	learn	how	to	
design	machines,	and	then	learn	to	prove	facts	about	which	problems	can	and	cannot	be	
solved	within	the	model.	Some	relationships	between	these	formal	models	and	practical	
applications	such	as	lexical	analysis,	text	editing,	machine	design,	syntax	analysis,	parser	
generation	are	also	covered.	

Detailed Prerequisites 	
The	primary	prerequisite	for	this	course	is	reasonable	mathematical	background.	Students	
should	feel	comfortable	with	abstract	mathematics	and	proofs.	Specific	topics	that	are	
useful	include	a	knowledge	of	logic,	sets,	and	functions,	as	well	as	basic	data	structures	and	
algorithms.	
	
Before	entering	this	course,	a	student	should	be	able	to:		

• Describe	a	set	using	set-builder	notation,	and	be	familiar	with	basic	set	operations	
(e.g.,	union,	intersection,	complement).	Prove	relationships	between	two	given	sets,	
e.g.,	subset,	disjointedness,	equality.	

• Use	and	understand	function	notation,	e.g.,	specifying	the	domain,	co-domain,	and	
range.	Describe	and	prove	whether	or	not	a	function	is	injective	and/or	surjective.		

• Use	and	understand	propositional	and	predicate	logic.	
• Prove	mathematical	propositions	using	various	techniques:	direct	proof,	indirect	

proof,	proof	by	contradiction,	proof	by	cases,	proof	by	mathematical	induction.	
• Write	pseudocode	to	precisely	describe	an	algorithm.	Prove	that	an	algorithm	

correctly	solves	the	intended	task.	
	

Course Goals 	
By	the	end	of	this	course	students	will:		



• Define	and	use	several	formal	models	of	computation:	finite	automata,	pushdown	
automata,	Turing	machines.	

• For	each	formal	model	of	computation	studied,	define	machines	to	solve	a	given	
problem.	Prove	that	the	machine	correctly	solves	the	problem.	

• For	each	formal	model	of	computation	studied,	describe	the	set	of	problems	that	can	
and	cannot	be	solved	in	the	model.	

• Use	various	techniques	to	prove	impossibility,	i.e.,	that	a	given	problem	cannot	be	
solved	by	any	machine	within	a	particular	formal	model.		

• Describe	operations	on	formal	languages,	and	prove	closure	facts	about	these	
operations.	Use	closure	facts	to	prove	whether	or	not	a	language	belongs	to	a	certain	
class.	

• Understand	the	difference	between	determinism	and	non-determinism,	and	how	it	
might	affect	computational	power.	

• Explain	the	historical	context	of	computability	in	the	study	of	mathematics,	and	how	
Alan	Turing’s	work	contributed	to	the	development	of	the	modern	computers	we	
use	today.	

• Relate	formal	models	of	computation	to	real-world	systems	and	applications	(e.g.,	
state	machines,	compilers,	pattern	matching,	software	development	tools).	

	
Learning Outcomes 	
Terminology	
Students	should	be	able	to:		

1. Use	notation	and	terminology	related	to	strings	(e.g.,	alphabet,	prefix,	suffix,	
substring)	and	string	operations	(e.g.,	concatenation,	reverse).	

2. Understand	the	concept	of	“formal	language”	and	understand	related	operations	on	
languages	(e.g.,	union,	intersection,	concatenation,	complement,	product,	Kleene	
star).	

3. Use	notation	and	terminology	related	to	functions	(e.g.,	input	types,	output	types,	
decision	problems,	computability,	encodings,	reductions).	

Finite Automata and Regular Expressions	
Students	should	be	able	to:		

1. Model	a	simple	real-world	system	as	an	abstract	state	machine	by	defining	the	
system	inputs,	the	states	of	the	system,	and	the	transitions	between	states.	

2. Formally	define	a	finite	automaton	by	providing	mathematical	definitions	of	the	
state	set,	the	input	alphabet,	the	transition	function,	the	start	state,	and	the	
accepting	states.	Draw	an	equivalent	machine	diagram	representation.	

3. Simulate	the	execution	of	a	finite	automaton	on	a	given	input	string	to	determine	the	
outcome.	

4. Compare	and	contrast	determinism	vs.	non-determinism	in	the	context	of	finite	
automata	(i.e.,	DFA’s	and	NFA’s).	

5. Explain	the	relationship	between	finite	automata	and	regular	expressions.	



6. Given	a	regular	expression	and	a	string,	determine	if	the	pattern	matches	the	string.	

Regular Languages   
Students	should	be	able	to:		

1. Given	a	regular	language,	design	a	corresponding	finite	automaton	or	regular	
expression.	

2. Write	a	formal	proof	using	state	invariants	that	a	specific	finite	automaton	correctly	
decides	a	given	regular	language.	

3. Given	a	finite	automaton	or	regular	expression,	identify	its	corresponding	regular	
language.	

4. Use	the	Myhill-Nerode	Theorem	to	determine	the	size	of	the	smallest	possible	
deterministic	finite	automaton	(DFA)	that	decides	a	given	regular	language.	(Time-
permitting:	Describe	an	algorithm	that	shrinks	a	given	DFA	to	its	smallest	possible	
size.)	

5. Use	various	techniques	to	prove	that	a	given	language	is	not	regular,	e.g.,	Pigeonhole	
Principle,	Myhill-Nerode	Theorem,	the	Pumping	Lemma.	

6. For	a	given	operation	on	languages,	prove	whether	or	not	the	set	of	all	regular	
languages	is	closed	under	the	operation.	

7. Use	known	closure	facts	to	prove	whether	or	not	a	given	language	is	regular.	

Context-Free Grammars 
Students	should	be	able	to:		

1. For	a	given	grammar	and	string,	write	out	a	derivation	of	the	string	and	draw	the	
corresponding	parse	tree.	

2. Understand	the	concept	of	ambiguity,	and	prove	whether	or	not	a	given	grammar	is	
ambiguous.	

3. Define	normal	forms	(e.g.,	Chomsky,	Greibach)	and	identify	if	a	given	grammar	is	in	
a	particular	normal	form.	

4. Describe	an	algorithm	that	converts	any	given	grammar	into	Chomsky	Normal	
Form.	

5. Describe	the	CYK	algorithm	that	decides	whether	a	given	grammar	in	Chomsky	
Normal	Form	generates	a	given	string.		

Pushdown Automata 
Students	should	be	able	to:		

1. Formally	define	a	pushdown	automaton	by	providing	mathematical	definitions	of	
the	state	set,	the	input	alphabet,	the	stack	alphabet,	the	transition	function,	the	start	
state,	and	the	accepting	states.	Draw	an	equivalent	machine	diagram	representation.	

2. Simulate	the	execution	of	a	pushdown	automaton	on	a	given	input	string	to	
determine	the	outcome.	

3. Compare	and	contrast	determinism	vs.	non-determinism	in	the	context	of	
pushdown	automata	(i.e.,	DPDA’s	and	PDA’s)	

4. Explain	the	relationship	between	pushdown	automata	and	context-free	grammars.	

 



Context-free Languages 
Students	should	be	able	to:		

1. Given	a	context-free	language,	design	a	corresponding	context-free	grammar	or	
pushdown	automaton.	

2. Given	a	context-free	grammar	or	pushdown	automaton,	identify	its	corresponding	
context-free	language.	

3. Use	the	Pumping	Lemma	to	prove	that	a	given	language	is	not	context-free.	
4. For	a	given	operation	on	languages,	prove	whether	or	not	the	set	of	all	context-free	

languages	is	closed	under	the	operation.	
5. Use	known	closure	facts	to	prove	whether	or	not	a	given	language	is	context-free.	

Turing Machines 
Students	should	be	able	to:		

1. Formally	define	a	Turing	machine	by	providing	mathematical	definitions	of	the	state	
set,	the	input	alphabet,	the	tape	alphabet,	the	transition	function,	the	start	state,	the	
accept	state,	and	the	reject	state.	Draw	an	equivalent	machine	diagram	
representation.	

2. Simulate	the	execution	of	a	Turing	machine	on	a	given	input	string	to	determine	the	
outcome.	

3. Draw	a	Turing	machine	diagram	that	decides	a	given	language,	or	computes	a	given	
function.	

4. Given	a	Turing	machine	diagram,	identify	the	language	it	decides	or	the	function	it	
computes.	

5. Discuss	Turing	machine	variants	and	their	equivalence	to	each	other.	Compare	and	
contrast	determinism	vs.	non-determinism	in	the	context	of	Turing	machines.	

6. (Time-permitting)	Define	complexity	classes	related	to	running	time	or	memory	
requirements	of	Turing	machines.	

Computability 
Students	should	be	able	to:		

1. Describe	and	use	terminology	relating	to	Turing-decidability	and	Turing-
recognizability.	

2. Understand	universality	and	be	able	to	describe/implement	the	encoding	process	of	
a	specific	object	(e.g.,	a	Turing	machine).	Describe	how	a	Universal	Turing	Machine	
can	simulate	the	execution	of	any	other	Turing	machine.	

3. Use	Cantor’s	diagonal	argument	to	prove	the	existence	of	non-computable	functions	
and	problems.	

4. Give	specific	examples	of	undecidable	problem	(e.g.,	The	Halting	Problem),	and	use	a	
reduction	to	prove	that	a	given	problem	is	undecidable.	

5. Explain	Rice’s	Theorem	and	its	proof.	For	a	given	undecidable	problem,	argue	
whether	or	not	Rice’s	Theorem	can	be	applied.	

6. Give	specific	examples	of	unrecognizable	problems	and	use	a	reduction	to	prove	
that	a	given	problem	is	unrecognizable.	



7. Design	an	algorithm	to	prove	that	a	given	problem	is	decidable	(or	recognizable).	
Use	the	dovetailing	technique	to	prove	that	a	given	problem	is	recognizable.	

8. For	a	given	operation	on	languages,	prove	whether	or	not	the	set	of	all	decidable	
languages	is	closed	under	the	operation,	and	prove	whether	or	not	the	set	of	all	
recognizable	languages	is	closed	under	the	operation.	

9. Use	known	closure	facts	to	prove	whether	or	not	a	given	language	is	decidable	(or	
recognizable).	

10. (Time-permitting)	Describe	the	Post	Correspondence	Problem	and	use	it	in	
reductions	to	prove	the	undecidability	of	various	problems	involving	context-free	
languages	(e.g.,	detecting	ambiguity)	

11. (Time-permitting)	Describe	the	Busy	Beaver	Game,	its	related	non-computable	
functions,	and	its	application	to	solving	open	problems	in	mathematics.	

Applications of Automata Theory and Formal Languages 
Students	should	be	able	to:		

1. Explain	the	use	of	finite	automata	and	regular	expressions	in	text	searching	tasks,	
and	in	the	tokenizing	step	of	the	code	compilation	process.	

2. Explain	the	use	of	pushdown	automata	and	context-free	grammars	in	the	parsing	
step	of	the	code	compilation	process.	

3. Explain	the	Church-Turing	Thesis	(and	its	historical	context),	and	how	it	relates	the	
study	of	computability	to	software	development	(for	example,	the	impossibility	of	
fully-automated	testing/debugging,	or	Turing-completeness).	


