
COMP 2150 – Object Orientation 

Course Description 

Calendar entry 

Design	and	development	of	object-oriented	software.	Topics	will	include	inheritance,	
polymorphism,	data	abstraction	and	encapsulation.	Examples	will	be	drawn	from	several	
programming	languages.	Prerequisite:	COMP	2160;	and	one	of	COMP	2140	or	COMP	2061.	

General Course Description 

By	this	point	students	have	learnt	the	basics	of	object-oriented	programming,	the	
differences	between	instance	and	class	variables,	and	how	to	build	simple	class	hierarchies	
in	Java.	Now	it	is	time	to	dive	deeper	into	the	concepts	of	object	orientation	and	understand	
how	they	work	in	multiple	different	object-oriented	languages	(Java,	C++	and	a	dynamic	OO	
programming	language	such	as	Ruby	or	JavaScript).	

We	use	Java	as	a	familiar	object-oriented	language.	C++	offers	low-level	access	to	the	
mechanisms	used	to	implement	object-oriented	techniques,	as	well	as	a	wider	variety	of	
those	techniques	compared	to	other	languages.	A	dynamic	and	dynamically-typed	
programming	language	introduces	a	different	programming	paradigm,	and	run-time	
polymorphic	behaviours	such	as	duck	typing.	

In	this	course	we	teach	students	how	to	use	different	object-oriented	tools	such	as	abstract	
classes,	polymorphism,	different	forms	of	inheritance,	shadowing,	overriding,	overloading,	
encapsulation,	Java	interfaces,	and	multiple	inheritance.	Students	also	learn	the	rudiments	
of	good	software	design	and	the	production	of	maintainable	software.	

Detailed Prerequisites 

Before	entering	this	course,	a	student	should	be	able	to:	

• Understand	the	basic	concepts	related	to	objects	(instance	and	class	
variables/methods,	access,	and	non-access	modifiers). 

• Manipulate	objects	in	memory	using	pointers. 
• Implement	data	structures	such	as	lists,	stacks,	and	binary	trees	in	a	high-level	

language. 
• Build	multi-file	projects	using	automated	tools. 
• Perform	well-defined	and	structured	tests	on	code.	
• Use	a	debugger	to	inspect	program	state	and	step	through	code	line-by-line.	



Course Goals 

By	the	end	of	this	course	students	will:	

• Understand	the	benefits,	in	terms	of	code	readability	and	maintainability,	of	
compartmentalizing	code	into	different	objects	and	hierarchies	of	classes. 

• Write	large	object-oriented	programs,	divided	into	multiple	files,	in	Java,	C++	and	a	
dynamic	programming	language. 

• Make	use	of	object-oriented	concepts	like	abstract	classes,	polymorphism,	
encapsulation	and	overriding	in	an	efficient	manner. 

• Begin	to	understand	the	advantages	and	disadvantages	of	different	programming	
languages. 

Learning Outcomes 

Basic OO concepts 

Students	should	be	able	to:	

1. Differentiate	between	classes,	records,	objects,	and	abstract	data	types. 
2. Describe	the	meaning	of	object-oriented	concepts	such	as	hierarchies	of	classes,	

single/multiple	inheritance,	polymorphism,	dynamic	class	binding	and	dynamic	
method-message	mapping. 

3. Explain	how	object-oriented	concepts	such	as	inheritance,	polymorphism,	and	
dynamic	binding/messaging	are	implemented. 

Basic OO concepts in Java and C++ 

Students	should	be	able	to:	

1. Define	and	use	classes	using	appropriate	syntax	for	access	modifiers,	variables,	
methods,	and	constructors. 

2. Use	abstract	classes	and	methods. 
3. Build	a	simple	hierarchy	of	classes. 
4. Use	polymorphism	by	defining	virtual	methods	and	reverse	polymorphism	by	

downcasting	a	variable.	C++	only. 
5. Write	standard	C++	code	for	file	input/output	operations. 

Inheritance and methods 

Students	should	be	able	to:	

1. Describe	9	different	forms	of	inheritance:	specialization,	specification,	construction,	
generalization,	extension,	limitation,	containment,	variance,	and	combination. 



2. Use	substitution	where	an	object	and	an	object	of	a	subclass	are	used	
interchangeably. 

3. Distinguish	between	the	behaviors	of	shadowing,	overriding,	redefinition	and	
refinement	of	methods. 

4. Define	class	methods	and	class	variables	in	C++. 

OCCF 

Students	should	be	able	to:	

1. Explain	the	Orthodox	Canonical	Class	Form:	standards	ensuring	that	the	same	low-
level	operations	work	similarly	for	all	objects. 

2. Define	a	null	constructor,	an	assignment	operator,	a	destructor,	and	a	copy	
constructor	in	a	C++	class. 

3. Use	reference	parameters	and	the	reserved	word	const	in	C++. 

Encapsulation 

Students	should	be	able	to:	

1. Explain	and	use	the	concept	of	information	hiding. 
2. Understand	the	differences	between	the	public,	protected	and	private	access	

modifiers	and	use	them	appropriately. 
3. Explain	the	ramifications	of	using	friendship	in	C++. 
4. Define	their	own	Java	packages	and	understand	the	“blank”	access	modifier	

(package	protection)	in	Java. 
5. Make	use	of	the	object	pointer. 

Java interfaces 

Students	should	be	able	to:	

1. Force	a	class	to	implement	abstract	methods	by	having	it	implement	an	interface. 
2. Use	interfaces	as	variable	types,	parameter	types	and	return	value	types. 
3. Build	classes	that	implement	multiple	interfaces	at	the	same	time. 
4. Define	interfaces	and	hierarchies	of	interfaces,	including	extending	multiple	

interfaces	at	the	same	time. 
5. Add	default	and	static	methods	inside	an	interface.	 

OO in a dynamic language 

Students	should	be	able	to:	

1. Write	standard	code	in	a	dynamic	language	in	the	same	manner	as	they	would	in	
Java	and	C++. 



2. Instantiate	objects	of	the	same	or	similar	types	using	a	language	specific	mechanism,	
such	as	classes	or	prototypes. 

3. Define	objects	as	a	collection	of	behaviours	rather	than	a	fixed	type	(“duck	typing”). 
4. Apply	metaprogramming	for	reflection	and	self-modification. 
5. Compare	the	object-oriented	capabilities	(e.g.,	abstract	classes,	inheritance,	

shadowing,	overriding,	refinement	and	polymorphism)	of	a	dynamic	language	with	
those	of	static	and	statically-typed	languages. 

Multiple inheritance 

Students	should	be	able	to:	

1. Build	a	class	that	implements	multiple	interfaces	in	Java. 
2. Explain	the	ramifications	of	using	multiple	inheritance	in	C++	and	how	mitigate	the	

impacts. 

Introduction to design patterns 

Students	should	be	able	to:	

1. Understand	the	importance	of	design	patterns	in	software	development. 
2. Distinguish	between	basic	design	patterns	(adaptor,	iterator,	etc.). 

 

 


