
COMP 4510 – Introduction to Parallel Computing 

Course Description 

Calendar entry 

An	overview	of	the	architectures	of	current	parallel	processors	and	techniques	used	to	
program	them.	Prerequisites:	COMP	3370	and	COMP	3430.		

General Course Description 

This	is	a	senior	level	course	focusing	on	the	current	issues	of	parallel	computing.	We	take	
an	in-depth	look	at	techniques	for	the	design	and	analysis	of	parallel	algorithms,	discuss	
commonly	available	commercial	platforms	to	program	such	algorithms	(e.g.,	OpenMP,	MPI,	
CUDA),	and	look	at	the	current	state	and	future	directions	in	parallel	computing	
technology.		

We	will	study	various	issues	in	developing	parallel	algorithms	(e.g.,	load	balancing,	
communication/synchronization	latencies)	on	different	multi-core	parallel	architectures	
along	with	design	techniques	(e.g.,	pipelining,	producer-consumer,	fork-join,	single	
program	multiple	data,	single	instruction	multiple	threads)	and	their	implementation	for	
topics	such	as:	

• sorting	(e.g.,	hyper	quicksort),		
• searching	(e.g.,	DFS,	BSF),		
• graph	algorithms	(e.g.,	shortest	path,	all	pair	shortest	path,	minimum	spanning	

tree),		
• scientific	computing	(e.g.,	dense	matrix	algorithms,	Cannon’s	algorithm,	Gaussian	

elimination),		
• dynamic	programming	(e.g.,	matrix-parenthesization	problem,	longest	common	

subsequence),	and		
• science	and	engineering	applications	(e.g.,	n-body	problem,	computing	pi).		

We	will	also	cover	various	interconnection	networks	(e.g.,	mesh,	hypercube,	ring)	and	their	
impact	on	the	performance	and	scalability	of	the	parallel	program	using	metrics	such	as	
speedup	and	efficiency.	

In	addition	to	these	core	aspects	of	parallel	computing,	a	specific	offering	of	this	course	
may	select	from	any	number	of	interesting	parallel	computing	related	topics.	Please	see	an	
offering’s	course	website	for	details.	

Detailed Prerequisites 

Before	entering	this	course,	a	student	should	be	able	to:	



• Explain	how	memory	organization	can	both	positively	and	negatively	impact	the	
performance	of	their	code.	

• Explain	modern	CPU	design	and	how	those	design	choices	lead	to	our	ability	to	
implement	sophisticated	algorithms.	

• Analyze	the	algorithm	and	data	structure	choices	made	to	implement	resource	
management	in	the	form	of	CPU	scheduling	and	memory	partitioning.	

• Implement	software	that	makes	use	of	core	operating	system	functionality	through	
concurrent	shared	memory	and	message	passing	programming	models.	

• Use	a	debugger	to	inspect	program	state	and	step	through	code	line-by-line.	
• Manipulate	memory	buffers	through	pointers	and	address	arithmetic.	
• Implement	algorithms	using	the	algorithmic	design	techniques	found	in	COMP	2080	

and	COMP	3170.		

Core Course Goals 

By	the	end	of	this	course	students	will:	

• Be	introduced	to	programming	using	the	message	passing	paradigm,	shared	address	
space	platforms,	and	accelerators.	

• Design	and	implement	parallel	versions	of	a	variety	of	common	algorithms	(taken	
from	2080	and	3170)	using	message	passing	and	threading	models.	

• Analyze	the	performance	and	scalability	of	parallel	algorithms	based	on	the	
programming	platform	used.	

• Discuss	a	variety	of	applications	of	parallel	computers.	

Core Learning Outcomes 

Models of Parallel Computers/Computation 

Students	should	be	able	to:	

1. Compare	and	contrast	single	program	multiple	data	model	(message	passing	and	
shared	and	distributed	address	space)	and	single	instruction	multiple	threads	model	
(accelerators).	

2. Explain	how	simultaneous	multithreading,	supported	through	architectural	designs	
such	as	multicore	processors,	provides	parallel	processing.	

3. Explain	how	non-uniform	memory	access,	supported	through	interconnection	
networks	such	as	hypercube,	provides	parallel	processing.	

Designing Parallel Algorithms 

Students	should	be	able	to:	

1. Apply	partitioning,	communication,	agglomeration,	and	mapping	techniques	to	a	
parallel	design.	

2. Analyze	and	solve	synchronization	issues	arising	in	a	parallel	algorithm.	



3. Identify	load	balancing	opportunities	and	apply	them	to	a	parallel	algorithm.	

Message Passing Computing 

Students	should	be	able	to:	

1. Implement	parallel	algorithms	using	MPI.	
2. Design	and	implement	parallel	message	passing	solutions	to	algorithms	from	COMP	

2080.	
3. Design	and	implement	parallel	message	passing	solutions	to	algorithms	from	COMP	

3170.	

Shared and Distributed Shared Memory Models 

Students	should	be	able	to:	

1. Explain	the	impact	of	parallelism	on	cache	memory	and	how	cache	coherence	
protocols	solve	these	problems.	

2. Implement	parallel	algorithms	using	OpenMP.	
3. Design	and	implement	shared	memory	solutions	to	algorithms	from	COMP	2080.	
4. Design	and	implement	shared	memory	solutions	to	algorithms	from	COMP	3170.	
5. Implement	parallel	algorithms	using	hybrid	programming	(i.e.,	MPI	with	OpenMP).	

Performance and Scalability 

Students	should	be	able	to:	

1. Explain	Amdahl’s	and	Gustafson’s	laws.	
2. Analyze	the	scalability	of	a	message	passing	algorithm	in	terms	of	communication	

and	computation	time.	
3. Analyze	the	scalability	of	a	shared	memory	algorithm	in	terms	of	communication	

and	computation	time.	

Additional Topics in Parallel Computing 
Along	with	the	core	learning	outcomes	listed	above,	the	instructor	can	choose	from	some	of	
the	following	to	supplement	their	offering	of	the	course.	The	instructor	is	also	free	to	
include	parallel	computing	related	topics	of	current	interest	that	are	not	listed	here.	

• Implementing	2080/3170	algorithms	using	CUDA	
• Accelerators	and	GPUs	
• Heterogenous	multi-core	processors	
• Quantum	computers	
• Read	and	review	articles	in	the	parallel	computing	literature	


