Search In
/g>
  • A-Z Index
  • Faculty & Staff Resources
  • Jump
  • Make a Gift
  • UM Learn
  • Webmail
  • Search
Search
Search In
  • Home
  • People
  • Research
  • Graduate Info
    • Graduate Programs
    • Graduate studies financial
    • Admission Into the Graduate Programs
    • Courses
    • Supplementary Regulations
    • Comprehensive Examinations
    • Thesis Proposal
    • Graduate students resources
    • Graduate Seminars
    • Graduate Mathematics Society
  • Undergraduate Info
    • Courses
    • Undergraduate Programs
    • Admissions
    • Archived Exams
    • Undergraduate Awards
    • Science Co-op
    • Financial Information for Undergraduates
    • Mathematics Help Centre
    • Levelup Program
    • XMXL
  • News & Events
    • Seminars
    • Events
    • MathCamp – Grade 9 & 10 Summer Camp
    • M.A.G.I.C. – Girls Summer Math Camp
  • Resources
    • Jobs
    • Statement on Academic Misconduct
    • Links
    • Newsletters
    • Fun Facts
    • Reading Room
    • Elections
    • Crowdmark
    • Committees
    • Department Council Bylaws
    • Covid19 – Building Access Log
  • About Us
    • History
Home>profiles>leobutler

Leo Butler

Profile
Select Publications
Leo Butler
(204) 474-6108
Leo.Butler@umanitoba.ca

Research and Teaching Interests

dynamical systems, differential equations, computer algebra

Education

  • BSScH University of Ottawa
  • MSc Queen’s University
  • PhD Queen’s University

Links

https://server.math.umanitoba.ca/~butlerlt/

  • Butler, Leo T. (2018). Nosé-thermostated mechanical systems on the n-torus. Arch. Ration. Mech. Anal. 227 (2), 855–867.
  • Butler, Leo T. (2016). Invariant tori for the Nosé thermostat near the high-temperature limit. Nonlinearity 29 (11), 3454–3463.
  • Butler, Leo T. (2014). A note on integrable mechanical systems on surfaces. Discrete Contin. Dyn. Syst. 34 (5), 1873–1878.
  • Butler, Leo T. (2014). Positive-entropy Hamiltonian systems on nilmanifolds via scattering. Nonlinearity 27 (10), 2479–2489.
  • Butler, Leo T. (2012). Smooth structures on Eschenburg spaces: numerical computations. Exp. Math. 21 (1), 57–64.
  • Butler, Leo T. and Sorrentino, Alfonso (2012). Weak Liouville-Arnol’d theorems and their implications. Comm. Math. Phys. 315 (1), 109–133.
  • Butler, Leo T. (2010). Positive-entropy integrable systems and the Toda lattice, II.Math. Proc. Cambridge Philos. Soc. 149 (3), 491–538.
  • Butler, Leo T. (2009). The Maslov cocycle, smooth structures, and real-analytic complete integrability. Amer. J. Math. 131 (5), 1311–1336.
  • Butler, L. T. and Levit, B. (2009). A Bayesian approach to the estimation of maps between Riemannian manifolds. II. Examples. Math. Methods Statist. 18 (3), 207–230.
  • Butler, Leo T. and Gelfreich, Vassili (2008). Positive-entropy geodesic flows on nilmanifolds. Nonlinearity 21 (7), 1423–1434. With online multimedia enhancements
  • Butler, Leo T. and Paternain, Gabriel P. (2008). Magnetic flows on Sol-manifolds: dynamical and symplectic aspects. Comm. Math. Phys. 284 (1), 187–202.
  • Butler, L. T. and Levit, B. (2007). A Bayesian approach to the estimation of maps between Riemannian manifolds. Math. Methods Statist. 16 (4), 281–297.
  • Butler, Leo T.. An integrable, volume-preserving flow on S2×S3 with positive Lebesgue-measure entropy. In Topological methods in the theory of integrable systems 81–87. Camb. Sci. Publ., Cambridge, 2006.
  • Butler, Leo T. (2006). An optical Hamiltonian and obstructions to integrability.Nonlinearity 19 (9), 2123–2135.
  • Butler, L. T. (2006). Geometry and real-analytic integrability. Regul. Chaotic Dyn. 11(3), 363–369.
  • Butler, Leo T. (2005). Invariant fibrations of geodesic flows. Topology 44 (4), 769–789.
  • Butler, Leo T. (2005). Manifolds of infinite topological type with integrable geodesic flows. Manuscripta Math. 116 (1), 99–113.
  • Butler, Leo T. (2004). Toda lattices and positive-entropy integrable systems. Invent. Math. 158 (3), 515–549.
  • Butler, Leo (2003). Integrable geodesic flows with wild first integrals: the case of two-step nilmanifolds. Ergodic Theory Dynam. Systems 23 (3), 771–797.
  • Butler, Leo T. (2003). Integrable Hamiltonian flows with positive Lebesgue-measure entropy. Ergodic Theory Dynam. Systems 23 (6), 1671–1690.
  • Butler, Leo T. (2003). Invariant metrics on nilmanifolds with positive topological entropy. Geom. Dedicata 100, 173–185.
  • Butler, Leo T. (2003). Zero entropy, non-integrable geodesic flows and a non-commutative rotation vector. Trans. Amer. Math. Soc. 355 (9), 3641–3650.
  • Butler, L. T. and Paternain, G. P. (2003). Collective geodesic flows. Ann. Inst. Fourier (Grenoble) 53 (1), 265–308.
  • Butler, Leo (2000). Integrable geodesic flows on n-step nilmanifolds. J. Geom. Phys. 36 (3-4), 315–323.
  • Butler, Leo T. (2000). New examples of integrable geodesic flows. Asian J. Math. 4(3), 515–526.
  • Butler, Leo Thomas (2000). Topological obstructions to the integrability of geodesic flows on nonsimply connected Riemannian manifolds. ProQuest LLC, Ann Arbor, MI.
  • Butler, Leo (1999). A new class of homogeneous manifolds with Liouville-integrable geodesic flows. C. R. Math. Acad. Sci. Soc. R. Can. 21 (4), 127–131.
Contact & Social Media
Asset 8
MAKE
A GIFT

Department of Mathematics
420 Machray Hall, 186 Dysart Road University of Manitoba, Winnipeg, MB R3T 2N2 Canada
Phone: 204-474-8703 Fax: 204-474-7611 EMAIL: mathematics_dept@umanitoba.ca
@ 2018 UNIVERSITY OF MANITOBA