Search In
/g>
  • A-Z Index
  • Faculty & Staff Resources
  • Jump
  • Make a Gift
  • UM Learn
  • Webmail
  • Search
Search
Search In
  • Home
  • People
  • Research
  • Graduate Info
    • Graduate Programs
    • Graduate studies financial
    • Admission Into the Graduate Programs
    • Courses
    • Supplementary Regulations
    • Comprehensive Examinations
    • Thesis Proposal
    • Graduate students resources
    • Graduate Seminars
    • Graduate Mathematics Society
  • Undergraduate Info
    • Courses
    • Undergraduate Programs
    • Admissions
    • Archived Exams
    • Undergraduate Awards
    • Science Co-op
    • Financial Information for Undergraduates
    • Mathematics Help Centre
    • Levelup Program
    • XMXL
  • News & Events
    • Seminars
    • Events
    • MathCamp – Grade 9 & 10 Summer Camp
    • M.A.G.I.C. – Girls Summer Math Camp
  • Resources
    • Jobs
    • Statement on Academic Misconduct
    • Links
    • Newsletters
    • Fun Facts
    • Reading Room
    • Elections
    • Crowdmark
    • Committees
    • Department Council Bylaws
    • Covid19 – Building Access Log
  • About Us
    • History
Home>profiles>robertcraigen

Robert Craigen

Profile
Select Publications
Robert Craigen
Associate Professor
(204) 474-7489
Robert.Craigen@umanitoba.ca

Research and Teaching Interests

Combinatorial matrix theory

Education

  • B.Sc. UBC
  • M.Sc. Waterloo
  • Ph.D. Waterloo

Current Graduate Student

  • Angel Barría Comicheo (Ph.D.)

Courses taught

  • MATH 3360 A01

Links

http://home.cc.umanitoba.ca/~craigen
https://mathscinet.ams.org/mathscinet/MRAuthorID/259868

  • Compton, B.; Craigen, R. and de Launey, W. (2016). Unreal BH(n,6)‘s and Hadamard matrices. Des. Codes Cryptogr. 79 (2), 219–229.
  • Craigen, Robert and de Launey, Warwick (2016). Constructions for circulant and group-developed generalized weighing matrices. J. Combin. Des. 24 (9), 406–420.
  • Craigen, R.. BIRS Workshop 14w2199 July 11–13, 2014: problem solving session. In Algebraic design theory and Hadamard matrices 251–259. Springer, Cham, 2015.
  • Craigen, R.; Faucher, G.; Low, R. and Wares, T. (2013). Circulant partial Hadamard matrices. Linear Algebra Appl. 439 (11), 3307–3317.
  • Craigen, R. and de Launey, W. (2009). Generalized Hadamard matrices whose transposes are not generalized Hadamard matrices. J. Combin. Des. 17 (6), 456–458.
  • Craigen, R. and Woodford, R. (2008). Power Hadamard matrices. Discrete Math. 308 (13), 2868–2884.
  • Craigen, R.; Gibson, Will and Koukouvinos, C. (2007). An update on primitive ternary complementary pairs. J. Combin. Theory Ser. A 114 (5), 957–963.
  • Craigen, R. (2006). Products and factorizations of ternary complementary pairs. Australas. J. Combin. 34, 269–280.
  • Craigen, R.; Georgiou, S.; Gibson, Will and Koukouvinos, C. (2006). Further explorations into ternary complementary pairs. J. Combin. Theory Ser. A 113 (6), 952–965.
  • Craigen, R. and Kharaghani, H. (2005). A recursive method for orthogonal designs. Metrika 62 (2-3), 185–193.
  • Low, R. M.; Stamp, M.; Craigen, R. and Faucher, G. (2005). Unpredictable binary strings. Congr. Numer. 177, 65–75. 36th Southeastern International Conference on Combinatorics, Graph Theory, and Computing
  • Craigen, R. and Kharaghani, H. (2004). Weaving Hadamard matrices with maximum excess and classes with small excess. J. Combin. Des. 12 (4), 233–255.
  • Craigen, R. (2003). Boolean and ternary complementary pairs. J. Combin. Theory Ser. A 104 (1), 1–16.
  • Craigen, R.; Holzmann, W. and Kharaghani, H. (2002). Complex Golay sequences: structure and applications. Discrete Math. 252 (1-3), 73–89.
  • Craigen, R. and Koukouvinos, C. (2001). A theory of ternary complementary pairs. J. Combin. Theory Ser. A 96 (2), 358–375.
  • Craigen, R.; Holzmann, W. H. and Kharaghani, H. (1997). On the asymptotic existence of complex Hadamard matrices. J. Combin. Des. 5 (5), 319–327.
  • Craigen, R. and Kharaghani, H. (1997). Hadamard matrices from weighing matrices via signed groups.Des. Codes Cryptogr. 12 (1), 49–58.
  • Craigen, R. and Kharaghani, H. (1996). A combined approach to the construction of Hadamard matrices. Australas. J. Combin. 13, 89–107.
  • Craigen, R. (1995). Constructing weighing matrices by the method of weaving. J. Combin. Des. 3 (1), 1–13.
  • Craigen, R. (1995). Signed groups, sequences, and the asymptotic existence of Hadamard matrices. J. Combin. Theory Ser. A 71 (2), 241–254.
  • Craigen, R. (1995). The structure of weighing matrices having large weights. Des. Codes Cryptogr. 5 (3), 199–216.
  • Craigen, R. (1994). A direct approach to Hadamard’s inequality. Bull. Inst. Combin. Appl. 12, 28–32.
  • Craigen, R. (1994). Complex Golay sequences. J. Combin. Math. Combin. Comput. 15, 161–169.
  • Craigen, R. (1994). Regular conference matrices and complex Hadamard matrices. Utilitas Math. 45, 65–69.
  • Craigen, R. (1994). Trace, symmetry and orthogonality. Canad. Math. Bull. 37 (4), 461–467.
  • Craigen, R. and Kharaghani, H. (1994). On the existence of regular Hadamard matrices. Congr. Numer. 99, 277–283. Twenty-third Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1993)
  • Craigen, R. (1993). The craft of weaving matrices. Congr. Numer. 92, 9–28. Twenty-second Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1992)
  • Craigen, R. and Kharaghani, H. (1993). On the nonexistence of Hermitian circulant complex Hadamard matrices. Australas. J. Combin. 7, 225–227.
  • Craigen, R. and Wallis, W. D. (1993). Hadamard matrices: 1893–1993. In Proceedings of the Twenty-fourth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1993) pp. 99–129.
  • Craigen, R. (1992). A generalization of Belevitch’s construction. In Proceedings of the Twenty-first Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1991) pp. 43–50.
  • Craigen, R. (1992). Constructing Hadamard matrices with orthogonal pairs. Ars Combin. 33, 57–64.
  • Craigen, R. (1992). Matrices equivalent to their transpose by permutations. In Proceedings of the Twenty-first Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1991) pp. 33–41.
  • Craigen, R.; Seberry, Jennifer and Zhang, Xian Mo (1992). Product of four Hadamard matrices. J. Combin. Theory Ser. A 59 (2), 318–320.
  • Craigen, R. (1991). A new class of weighing matrices with square weights. Bull. Inst. Combin. Appl. 3, 33–42.
  • Craigen, R. (1991). Embedding rectangular matrices in Hadamard matrices. Linear and Multilinear Algebra 29 (2), 91–92.
  • Craigen, R. (1991). Equivalence classes of inverse orthogonal and unit Hadamard matrices. Bull. Austral. Math. Soc. 44 (1), 109–115.
  • Craigen, R. (1991). Weighing matrices from generalized Hadamard matrices by 2-adjugation. J. Combin. Math. Combin. Comput. 10, 193–200.
  • Craigen, Robert William (1991). Constructions for orthogonal matrices. ProQuest LLC, Ann Arbor, MI.
  • Craigen, R. (1990). The range of the determinant function on the set of n×n (0,1)-matrices. J. Combin. Math. Combin. Comput. 8, 161–171.
  • Craigen, R. and Páles, Z. (1989). The associativity equation revisited. Aequationes Math. 37 (2-3), 306–312.
Contact & Social Media
Asset 8
MAKE
A GIFT

Department of Mathematics
420 Machray Hall, 186 Dysart Road University of Manitoba, Winnipeg, MB R3T 2N2 Canada
Phone: 204-474-8703 Fax: 204-474-7611 EMAIL: mathematics_dept@umanitoba.ca
@ 2018 UNIVERSITY OF MANITOBA