Search In
/g>
  • A-Z Index
  • Faculty & Staff Resources
  • Jump
  • Make a Gift
  • UM Learn
  • Webmail
  • Search
Search
Search In
  • Home
  • People
  • Research
  • Graduate Info
    • Graduate Programs
    • Graduate studies financial
    • Admission Into the Graduate Programs
    • Courses
    • Supplementary Regulations
    • Comprehensive Examinations
    • Thesis Proposal
    • Graduate students resources
    • Graduate Seminars
    • Graduate Mathematics Society
  • Undergraduate Info
    • Courses
    • Undergraduate Programs
    • Admissions
    • Archived Exams
    • Undergraduate Awards
    • Science Co-op
    • Financial Information for Undergraduates
    • Mathematics Help Centre
    • Levelup Program
    • XMXL
  • News & Events
    • Seminars
    • Events
    • MathCamp – Grade 9 & 10 Summer Camp
    • M.A.G.I.C. – Girls Summer Math Camp
  • Resources
    • Jobs
    • Statement on Academic Misconduct
    • Links
    • Newsletters
    • Fun Facts
    • Reading Room
    • Elections
    • Crowdmark
    • Committees
    • Department Council Bylaws
    • Covid19 – Building Access Log
  • About Us
    • History
Home>profiles>yongzhang

Yong Zhang

Profile
Select Publications
Yong Zhang
Professor
(204) 474-6934
Yong.Zhang@umanitoba.ca

Research and Teaching Interests

Functional analysis, Banach algebras, harmonic analysis

Current graduate student

  • Landis Wong (M.Sc. Thesis)

Courses taught

MATH 3470 A01

  • Shepelska, Varvara and Zhang, Yong (2018). Non-weakly amenable Beurling algebras. Indiana University Mathematics Journal 67 (1), 119–150.
  • Shepelska, Varvara and Zhang, Yong (2017). Weak amenability of the central Beurling algebras on [FC]− groups. Michigan Math. J. 66 (2), 433–446.
  • Lau, Anthony To-Ming and Zhang, Yong (2016). Finite-dimensional invariant subspace property and amenability for a class of Banach algebras. Trans. Amer. Math. Soc. 368 (6), 3755–3775.
  • Lau, Anthony To-Ming and Zhang, Yong (2016). Fixed point properties for semigroups of nonlinear mappings on unbounded sets. J. Math. Anal. Appl. 433 (2), 1204–1219.
  • Ghamarshoushtari, Reza and Zhang, Yong (2015). Amenability properties of Banach algebra valued continuous functions. J. Math. Anal. Appl. 422 (2), 1335–1341.
  • Zhang, Yong (2015). Addendum to “Amenability properties of Banach algebra valued continuous functions” [J. Math. Anal. Appl. 422 (2015) 1335–1341] [ MR3269514]. J. Math. Anal. Appl. 431 (1), 702–703.
  • Zhang, Yong (2014). Weak amenability of commutative Beurling algebras. Proc. Amer. Math. Soc. 142(5), 1649–1661.
  • Zhang, Yong (2013). The existence of solutions to nonlinear second order periodic boundary value problems. Nonlinear Anal. 76, 140–152.
  • Lau, Anthony T.-M. and Zhang, Yong (2012). Fixed point properties for semigroups of nonlinear mappings and amenability. J. Funct. Anal. 263 (10), 2949–2977.
  • Zhang, Yong (2012). 2m-weak amenability of group algebras. J. Math. Anal. Appl. 396 (1), 412–416.
  • Abtahi, Mortaza and Zhang, Yong (2010). A new proof of the amenability of C(X). Bull. Aust. Math. Soc. 81 (3), 414–417.
  • Ghahramani, F.; Samei, E. and Zhang, Yong (2010). Generalized amenability properties of the Beurling algebras. J. Aust. Math. Soc. 89 (3), 359–376.
  • Zhang, Yong. Solved and unsolved problems in generalized notions of amenability for Banach algebras. In Banach algebras 2009 441–454. Polish Acad. Sci. Inst. Math., Warsaw, 2010.
  • Choi, Y.; Ghahramani, F. and Zhang, Y. (2009). Approximate and pseudo-amenability of various classes of Banach algebras. J. Funct. Anal. 256 (10), 3158–3191.
  • Gheorghe, Filofteia and Zhang, Yong (2009). A note on the approximate amenability of semigroup algebras. Semigroup Forum 79 (2), 349–354.
  • Ghahramani, F.; Loy, R. J. and Zhang, Y. (2008). Generalized notions of amenability. II. J. Funct. Anal. 254 (7), 1776–1810.
  • Lau, Anthony To-Ming and Zhang, Yong (2008). Fixed point properties of semigroups of non-expansive mappings. J. Funct. Anal. 254 (10), 2534–2554.
  • Ghahramani, F. and Zhang, Y. (2007). Pseudo-amenable and pseudo-contractible Banach algebras.Math. Proc. Cambridge Philos. Soc. 142 (1), 111–123.
  • Dales, H. G.; Loy, R. J. and Zhang, Y. (2006). Approximate amenability for Banach sequence algebras.Studia Math. 177 (1), 81–96.
  • Zhang, Yong (2003). Approximate complementation and its applications in studying ideals of Banach algebras. Math. Scand. 92 (2), 301–308.
  • Zhang, Yong (2003). Unbounded approximate identities in algebras of compact operators on Banach spaces. Math. Proc. Cambridge Philos. Soc. 134 (1), 187–192.
  • Zhang, Yong (2002). Approximate identities for ideals of Segal algebras on a compact group. J. Funct. Anal. 191 (1), 123–131.
  • Zhang, Yong (2002). Weak amenability of module extensions of Banach algebras. Trans. Amer. Math. Soc. 354 (10), 4131–4151.
  • Zhang, Yong (2001). Weak amenability of a class of Banach algebras. Canad. Math. Bull. 44 (4), 504–508.
  • Zhang, Yong (2000). Maximal ideals and the structure of contractible and amenable Banach algebras.Bull. Austral. Math. Soc. 62 (2), 221–226.
  • Zhang, Yong (1999). Amenability and weak amenability of Banach algebras. ProQuest LLC, Ann Arbor, MI.
  • Zhang, Yong (1999). Nilpotent ideals in a class of Banach algebras. Proc. Amer. Math. Soc. 127 (11), 3237–3242.
  • Zhang, Yong (1996). A note on: “Small representations of finite distributive lattices as congruence lattices” [Proc. Amer. Math. Soc. bf 123 (1995), no. 7, 1959–1961; MR1301499 (95k:06017b)] by G. Grätzer, I. Rival and N. Zaguia. Order 13 (4), 365–367.
  • Zhang, Yong (1996). A note on the solvability of singular boundary value problems. Nonlinear Anal. 26 (10), 1605–1609.
  • Chen, Shao Zhu and Zhang, Yong (1995). Singular boundary value problems on a half-line. J. Math. Anal. Appl. 195 (2), 449–468.
  • Zhang, Yong (1995). Positive solutions of singular sublinear Dirichlet boundary value problems. SIAM J. Math. Anal. 26 (2), 329–339.
  • Zhang, Yong (1994). Positive solutions of singular sublinear Emden-Fowler boundary value problems.J. Math. Anal. Appl. 185 (1), 215–222.
  • Zhang, Yong (1993). Existence of solutions of a kind of singular boundary value problem. Nonlinear Anal. 21 (2), 153–159.
  • Zhang, Yong (1992). Existence of nonnegative solutions to a two-point boundary value problem for a nonlinear second-order equation. Shandong Daxue Xuebao Ziran Kexue Ban 27 (1), 45–56.
  • Yong, Zhang (1991). On the uniqueness of solutions of neutral functional-differential equations. J. Math. Anal. Appl. 161 (2), 426–439.
  • Zhang, Yong (1990). Existence of solutions to systems of second-order periodic boundary value problems in n dimensions. Acta Math. Appl. Sinica 13 (3), 272–284.
  • Zheng, Yong (1986). A uniqueness theorem of Kamke type for solutions of a class of neutral functional-differential equations. Chinese Ann. Math. Ser. A 7 (5), 519–527. An English summary appears in Chinese Ann. Math. Ser. B bf7 (1986), no. 4, 527
Contact & Social Media
Asset 8
MAKE
A GIFT

Department of Mathematics
420 Machray Hall, 186 Dysart Road University of Manitoba, Winnipeg, MB R3T 2N2 Canada
Phone: 204-474-8703 Fax: 204-474-7611 EMAIL: mathematics_dept@umanitoba.ca
@ 2018 UNIVERSITY OF MANITOBA