MATH 2720 Multivariable Calculus
TEST 2
March 11, 2009
(5:30-6:30, 205 Armes)

NAME: ___________________ Student number: ______

(If you need more space use the backside and indicate that you have done so.)

[8] 1. Consider the function \(z = x^3(1 + y^2) \).
(a) Find the slope of the line passing through the point (1,1,2) and tangent to the
curve of intersection of the surface \(z = x^3(1 + y^2) \) and the plane \(y = 1 \).
(b) Evaluate \(\frac{\partial^2 z}{\partial x \partial y} \) and \(\frac{\partial^2 z}{\partial y \partial x} \).

[7] 2. A weather balloon moves along the curve \(x = t, y = 2t, z = t - t^3 \), where \(t \)
stands for the elapsed time measured in hours (and \(x, y \) and \(z \) are the coordinates of the
balloon). The thermometer attached to the balloon gives the temperature of
\(T(x,y,z,t) = \frac{-xy}{1 + x} \) (in degrees Celsius). Find the rate of change of the temperature
at the time when \(t = 1 \). [Hint: draw a tree-diagram and use the Chain rule.]
3. Consider the function \(f(x,y) = y^2e^x \).
(a) Find the directional derivative of this function at the point \(P(0,1) \) and in the direction of the unit vector \(u = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right) \).
(b) Find the unit vector in the direction in which \(f \) increases most rapidly at \(P \) and give the rate of change in that direction. Find the unit vector in the direction in which \(f \) decreases most rapidly at \(P \) and give the rate of change in that direction.

4. Find the equation of the tangent plane to the surface defined by \(xy + yz + xz = 11 \) at the point \((1,2,3) \).
5. Find the point in the plane \(x - y + z = 1 \) that is closest to the point \((-1,1,2)\).
Justify your answer by using the second (partial) derivative test.