University of Manitoba Department of Statistics

STAT 4170 / STAT 7240, CRN 24882 Lifetime Data Analysis (Survival Analysis) Second Term, 2010 – 2011

Instructor	Dr. Xikui Wang Office: 321 Machray Hall (Phone: 474 – 6275 or 474 – 8172) E-mail: xikui_wang@umanitoba.ca
Office hours	To be decided, or by appointment
Course web	All course materials are posted on the University of Manitoba ANGEL
General description	An introduction to basic principles and techniques for survival analysis in biostatistics and reliability, with emphasis on both theory and applications. Topics to be covered include: censoring, survival, hazard and other functions, parametric, semi-parametric and nonparametric methods, proportional hazards regression, clinical trials.
Prerequisites	STAT 3480 and STAT 3800 (or STAT 3600). Some knowledge of calculus is also assumed.
Recommended references	Statistical Methods for Survival Data Analysis (Third Edition), by E. T. Lee and J. W. Wang, John Wiley and Sons, New York, 2003
	Statistical Models and Methods for Lifetime Data (Second Edition), By J. F. Lawless, John Wiley and Sons, New York, 2003
	Modelling survival data in medical research (Second Edition), by David Collett, Chapman & Hall / CRC, 2003, ISBN 1584883251
SAS reference	Applied statistics and the SAS programming language (4 th ed.) by R. P. Cody and J. K. Smith, Prentice Hall
	Survival analysis using the SAS system – a practical guide, by P. D. Allison, SAS institute, 1995, ISBN 1 – 55544 – 279 – X
Grading	Three Assignments15%Midterm Test (1.5 hours, time/date and place TBA)35%Final Examination (2 hours, place TBA)50%Note: Students in STAT 7240 are required to do some extra work for the assignments and exams.
Examinations	Both the mid-term test and final examination are closed book. A calculator is necessary. Required statistical tables and a formula sheet (see the next page) are provided. The test / examination questions will range from computations to concepts and proofs.

Course contents	Module I – Basic concepts, models, functions and distributions
	Censoring: Types I, Type II, interval, random, etc. Continuous and discrete models: survival function, (cumulative) hazard function, mean residual lifetime function, mean and median survival times Distribution: exponential, Weibull, Gamma, normal, etc.
	Module II – Nonparametric methods – one-sample and multiple-sample
	Product-limit (Kaplan-Meier) and actuarial (life-table) estimators Greenwood's formula, confidence band (Mantel-Haenszel) log-rank test, Wilcoxon test, etc.
	Module III – Semi-parametric regression: Cox's proportional hazards
	Partial likelihood, global and local tests, estimation, etc. Model building, variable selections, and diagnostics for PH assumptions
	Module IV – Parametric methods: MLE for Type I / II censoring
	Exponential and Weibull distributions Other distributions: normal, log-normal, Gamma, etc. (time permitting)
	Module V – Optional topics (time permitting)
	Parametric regression accelerated failure time models, competing risks

Parametric regression, accelerated failure time models, competing risks models, time-dependent covariates, stratified models, recurrent events, sample size determination, etc.

Formula Sheet (all other formulas need to be memorized)

$$R = \sum_{i=1}^{n} \left(1 - e^{-\frac{L_i}{\theta}} \right) \qquad \qquad U = \frac{1 + 0.5/r_2}{1 + 0.5/r_1} \frac{\theta_2}{\theta_1} \frac{\hat{\theta}_1}{\hat{\theta}_2}$$

Exponential Distribution, Multiple samples, Type I: $\Lambda = \left(2\sum_{i=1}^{m} r_i\right) \ln \tilde{\theta} - 2\sum_{i=1}^{m} r_i \ln \hat{\theta}_i$

$$\Lambda_1 = 2r_1 \ln \frac{\tilde{\theta}_1}{\hat{\theta}_1} + 2r_2 \ln \frac{\tilde{\theta}_2}{\hat{\theta}_2}, \qquad \tilde{\theta}_1 = a\tilde{\theta}_2 = \frac{T_1 + aT_2}{r_1 + r_2}, \qquad Ha: \theta_1 \neq a\theta_2$$

Exponential Distribution, Multiple samples, Type II: $\Lambda = \left(2\sum_{i=1}^{m} r_i\right) \ln \tilde{\theta} - 2\sum_{i=1}^{m} r_i \ln \hat{\theta}_i$

Weibull Distribution, One Sample, Type I:
$$\frac{\sum_{i=1}^{n} t_i^{\hat{\beta}} \ln t_i}{\sum_{i=1}^{n} t_i^{\hat{\beta}}} - \frac{1}{r} \sum_{i \in D} \ln t_i = 0, \ \hat{\alpha} = \left(\frac{1}{r} \sum_{i=1}^{n} t_i^{\hat{\beta}}\right)^{1/\hat{\beta}}$$