Search In
/g>
  • A-Z Index
  • Faculty & Staff Resources
  • Jump
  • Make a Gift
  • UM Learn
  • Webmail
  • Search
Search
Search In
  • Home
  • People
  • Research
  • Graduate Info
    • Graduate Programs
    • Graduate studies financial
    • Admission Into the Graduate Programs
    • Courses
    • Supplementary Regulations
    • Comprehensive Examinations
    • Thesis Proposal
    • Graduate students resources
    • Graduate Seminars
    • Graduate Mathematics Society
  • Undergraduate Info
    • Courses
    • Undergraduate Programs
    • Admissions
    • Archived Exams
    • Undergraduate Awards
    • Science Co-op
    • Financial Information for Undergraduates
    • Mathematics Help Centre
    • Levelup Program
    • XMXL
  • News & Events
    • Seminars
    • Events
    • MathCamp – Grade 9 & 10 Summer Camp
    • M.A.G.I.C. – Girls Summer Math Camp
  • Resources
    • Jobs
    • Statement on Academic Misconduct
    • Links
    • Newsletters
    • Fun Facts
    • Reading Room
    • Elections
    • Crowdmark
    • Committees
    • Department Council Bylaws
    • Covid19 – Building Access Log
  • About Us
    • History
Home>profiles>ericschippers

Eric Schippers

Profile
Select Publications
Eric Schippers
Professor
(204) 474-6926
Eric.Schippers@umanitoba.ca

Research and Teaching Interests

complex analysis, geometric function theory, Teichmueller theory, conformal field theory

Education

  • B.Sc. Toronto
  • M.Sc. Toronto
  • Ph.D. Toronto

Courses taught

  • MATH 1700 A01
  • MATH 2080 A01
  • MATH 4290 A01
  • MATH 7290 A01

Links

http://server.math.umanitoba.ca/~schippers/

  • Schippers, Eric (2018). Conformal invariants associated with quadratic differentials. Israel J. Math. 223(1), 449–491.
  • Schippers, Eric and Staubach, Wolfgang (2018). Riemann boundary value problem on quasidisks, Faber isomorphism and Grunsky operator. Complex Anal. Oper. Theory 12 (2), 325–354.
  • Radnell, David; Schippers, Eric and Staubach, Wolfgang (2017). Convergence of the Weil-Petersson metric on the Teichmüller space of bordered Riemann surfaces. Commun. Contemp. Math. 19 (1), 1650025, 39.
  • Radnell, David; Schippers, Eric and Staubach, Wolfgang (2017). Quasiconformal maps of bordered Riemann surfaces with L2 Beltrami differentials. J. Anal. Math. 132, 229–245.
  • Radnell, David; Schippers, Eric and Staubach, Wolfgang. Quasiconformal Teichmüller theory as an analytical foundation for two-dimensional conformal field theory. In Lie algebras, vertex operator algebras, and related topics 205–238. Amer. Math. Soc., Providence, RI, 2017.
  • Schippers, Eric and Staubach, Wolfgang (2017). Harmonic reflection in quasicircles and well-posedness of a Riemann-Hilbert problem on quasidisks. J. Math. Anal. Appl. 448 (2), 864–884.
  • Schippers, Eric and Staubach, Wolfgang (2017). Well-posedness of a Riemann-Hilbert problem on d-regular quasidisks. Ann. Acad. Sci. Fenn. Math. 42 (1), 141–147.
  • Radnell, David; Schippers, Eric and Staubach, Wolfgang (2016). Dirichlet problem and Sokhotski-Plemelj jump formula on Weil-Petersson class quasidisks. Ann. Acad. Sci. Fenn. Math. 41 (1), 119–127.
  • Radnell, David; Schippers, Eric and Staubach, Wolfgang (2016). Weil-Petersson class non-overlapping mappings into a Riemann surface. Commun. Contemp. Math. 18 (4), 1550060, 21.
  • Schippers, Eric (2016). Quadratic differentials and conformal invariants. J. Anal. 24 (2), 209–228.
  • Radnell, David; Schippers, Eric and Staubach, Wolfgang (2015). A Hilbert manifold structure on the Weil-Petersson class Teichmüller space of bordered Riemann surfaces. Commun. Contemp. Math. 17(4), 1550016, 42.
  • Reimer, Krista and Schippers, Eric (2015). Faber-Tietz functions and Grunsky coefficients for mappings into a torus. Complex Anal. Oper. Theory 9 (8), 1663–1679.
  • Schippers, Eric and Staubach, Wolfgang (2015). A symplectic functional analytic proof of the conformal welding theorem. Proc. Amer. Math. Soc. 143 (1), 265–278.
  • Penfound, Bryan and Schippers, Eric (2013). Power matrices for Faber polynomials and conformal welding. Complex Var. Elliptic Equ. 58 (9), 1247–1259.
  • Radnell, D. and Schippers, E. (2012). The semigroup of rigged annuli and the Teichmüller space of the annulus. J. Lond. Math. Soc. (2) 86 (2), 321–342.
  • Radnell, David and Schippers, Eric (2010). Fiber structure and local coordinates for the Teichmüller space of a bordered Riemann surface. Conform. Geom. Dyn. 14, 14–34.
  • Schippers, Eric (2010). A power matrix approach to the Witt algebra and Loewner equations. Comput. Methods Funct. Theory 10 (1), 399–420.
  • Schippers, Eric (2010). The derivative of the Nehari functional. Ann. Acad. Sci. Fenn. Math. 35 (1), 291–307.
  • Radnell, David and Schippers, Eric (2009). A complex structure on the set of quasiconformally extendible non-overlapping mappings into a Riemann surface. J. Anal. Math. 108, 277–291.
  • Schippers, Eric and Staubach, Wolfgang (2009). Variation of Neumann and Green functions under homotopies of the boundary. Israel J. Math. 173, 279–303.
  • Roth, Oliver and Schippers, Eric (2008). The Loewner and Hadamard variations. Illinois J. Math. 52 (4), 1399–1415.
  • Schippers, Eric (2007). The calculus of conformal metrics. Ann. Acad. Sci. Fenn. Math. 32 (2), 497–521.
  • Radnell, David and Schippers, Eric (2006). A complex structure on the moduli space of rigged Riemann surfaces. J. Geom. Symmetry Phys. 5, 82–94.
  • Radnell, David and Schippers, Eric (2006). Quasisymmetric sewing in rigged Teichmüller space.Commun. Contemp. Math. 8 (4), 481–534.
  • Schippers, Eric (2006). The power matrix, coadjoint action and quadratic differentials. J. Anal. Math. 98, 249–277.
  • Schippers, Eric (2004). Behaviour of kernel functions under homotopic variations of planar domains.Comput. Methods Funct. Theory 4 (2), 283–298.
  • Schippers, Eric (2003). Conformal invariants and higher-order Schwarz lemmas. J. Anal. Math. 90, 217–241.
  • Schippers, Eric. Conformal invariants corresponding to pairs of domains. In Future trends in geometric function theory 207–219. Univ. Jyväskyl,̈ Jyv”k̈yl”a, 2003.
  • Schippers, Eric D. (2002). Estimates on kernel functions of elliptically Schlicht domains. Comput. Methods Funct. Theory 2 (2, [On table of contents: 2004]), 579–596.
  • Schippers, Eric (2000). Distortion theorems for higher order Schwarzian derivatives of univalent functions. Proc. Amer. Math. Soc. 128 (11), 3241–3249.
  • Schippers, Eric Duncan (1999). The calculus of conformal metrics and univalence criteria for holomorphic functions. ProQuest LLC, Ann Arbor, MI.
Contact & Social Media
Asset 8
MAKE
A GIFT

Department of Mathematics
420 Machray Hall, 186 Dysart Road University of Manitoba, Winnipeg, MB R3T 2N2 Canada
Phone: 204-474-8703 Fax: 204-474-7611 EMAIL: mathematics_dept@umanitoba.ca
@ 2018 UNIVERSITY OF MANITOBA